全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

平台型企业跨界颠覆性创新的路径机制研究
Research on the Path Mechanism of Cross Border Disruptive Innovation in Platform Based Enterprises

DOI: 10.12677/ecl.2025.142538, PP. 421-432

Keywords: 跨界颠覆性创新,大数据能力,资源编排,知识搜索,搜索广度,搜索深度,平台企业
Cross Border Disruptive Innovation
, Big Data Capabilities, Resource Orchestration, Knowledge Search, Search Breadth, Search Depth, Platform Enterprise

Full-Text   Cite this paper   Add to My Lib

Abstract:

数字化背景下,大数据能力为平台企业跳脱既有技术路径,实现跨界颠覆性创新提供了无限可能。本文从资源编排视角切入,以2009至2022年沪深A股上市平台企业为研究样本,探究大数据能力影响跨界颠覆性创新的机制和条件。研究发现,大数据能力有效促进平台企业跨界颠覆性创新,经稳健性检验和内生性检验后结果仍然显著。机制研究发现,资源编排发挥部分中介作用,且知识搜索和政府补助显著促进大数据能力对跨界颠覆性创新的提升效应。进一步细化发现,知识搜索广度的正向调节作用更加显著。本文适当拓展了大数据背景下资源编排及跨界颠覆性创新相关研究,为平台企业实现跨界颠覆提供理论支撑,同时也为相关政策制定提供一定的启示意义和参考价值。
In the context of digitalization, big data capabilities provide unlimited possibilities for platform enterprises to break away from existing technological paths and achieve cross-border disruptive innovation. This article approaches from the perspective of resource allocation, using A-share listed platform companies in Shanghai and Shenzhen from 2009 to 2022 as research samples, to explore the mechanisms and conditions under which big data capabilities affect cross-border disruptive innovation. Research has found that big data capabilities effectively promote disruptive innovation across platforms, and the results remain significant after robustness and endogeneity tests. Mechanism research has found that resource orchestration plays a partial mediating role, and knowledge search and government subsidies significantly promote the enhancement effect of big data capabilities on cross-border disruptive innovation. Further refinement reveals that the positive moderating effect of knowledge search breadth is more significant. This article appropriately expands the research on resource orchestration and cross-border disruptive innovation under the background of big data, providing theoretical support for platform enterprises to achieve cross-border disruption, and also providing certain enlightening significance and reference value for relevant policy formulation.

References

[1]  Hossinger, S.M. (2020) Knowledge Transfer through Academic Spin-Offs and University to Industry Cooperations. Universität Siegen-Fakultät III, 149.
[2]  黄鲁成, 成雨, 吴菲菲, 等. 关于颠覆性技术识别框架的探索[J]. 科学学研究, 2015, 33(5): 654-664.
[3]  周洋, 张庆普. 市场导向对跨界整合式颠覆性创新的影响——基于战略选择的调节作用[J]. 科学学与科学技术管理, 2019, 40(2): 99-113.
[4]  刘洋, 董久钰, 魏江. 数字创新管理: 理论框架与未来研究[J]. 管理世界, 2020, 36(7): 198-217, 219.
[5]  Olabode, O.E., Boso, N., Hultman, M. and Leonidou, C.N. (2022) Big Data Analytics Capability and Market Performance: The Roles of Disruptive Business Models and Competitive Intensity. Journal of Business Research, 139, 1218-1230.
https://doi.org/10.1016/j.jbusres.2021.10.042
[6]  Mikalef, P. and Krogstie, J. (2020) Examining the Interplay between Big Data Analytics and Contextual Factors in Driving Process Innovation Capabilities. European Journal of Information Systems, 29, 260-287.
https://doi.org/10.1080/0960085x.2020.1740618
[7]  Carnes, C.M., Hitt, M.A., Sirmon, D.G., Chirico, F. and Huh, D.W. (2021) Leveraging Resources for Innovation: The Role of Synchronization. Journal of Product Innovation Management, 39, 160-176.
https://doi.org/10.1111/jpim.12606
[8]  Zhu, P., Miao, X. and Jin, S. (2022) Boundary-Spanning Search and Business Model Innovation: The Joint Moderating Effects of Innovative Cognitive Imprinting and Environmental Dynamics. European Journal of Innovation Management, 27, 310-333.
https://doi.org/10.1108/ejim-12-2021-0605
[9]  Bertot, J.C. and Choi, H. (2013) Big data and e-Government: Issues, Policies, and Recommendations. Proceedings of the 14th Annual International Conference on Digital Government Research, Quebec, 17-20 June 2013, 1-10.
https://doi.org/10.1145/2479724.2479730
[10]  Loebbecke, C. and Picot, A. (2015) Reflections on Societal and Business Model Transformation Arising from Digitization and Big Data Analytics: A Research Agenda. The Journal of Strategic Information Systems, 24, 149-157.
https://doi.org/10.1016/j.jsis.2015.08.002
[11]  Laursen, K. and Salter, A. (2005) Open for Innovation: The Role of Openness in Explaining Innovation Performance among U.K. Manufacturing Firms. Strategic Management Journal, 27, 131-150.
https://doi.org/10.1002/smj.507
[12]  Kim, B., Kim, E., Kim, Y. and Cho, J.Y. (2018) Where to Find Innovative Ideas: Interdependence-Building Mechanisms and Boundary-Spanning Exploration. Knowledge Management Research & Practice, 16, 376-387.
https://doi.org/10.1080/14778238.2018.1493367
[13]  Choi, J., Jeong, S. and Kim, K. (2015) A Study on Diffusion Pattern of Technology Convergence: Patent Analysis for Korea. Sustainability, 7, 11546-11569.
https://doi.org/10.3390/su70911546
[14]  李金克, 张荣, 李伯钧. 环境动态性视角下大数据能力对制造业绿色竞争力的影响机制研究——基于SBM-GML指数模型[J]. 科技进步与对策, 2021, 38(23): 67-75.
[15]  高玉强, 王子帅, 张宇. 大数据应用如何抑制企业投融资期限错配?——资源效应与信息效应[J]. 金融论坛, 2023, 28(10): 36-47.
[16]  张叶青, 陆瑶, 李乐芸. 大数据应用对中国企业市场价值的影响——来自中国上市公司年报文本分析的证据[J]. 经济研究, 2021, 56(12): 42-59.
[17]  王开明, 刘慧玲. IT资源对企业绩效的贡献何以消失——信息技术进步的作用[J]. 中国地质大学学报(社会科学版), 2023, 23(5): 105-118.
[18]  吴非, 胡慧芷, 林慧妍, 等. 企业数字化转型与资本市场表现——来自股票流动性的经验证据[J]. 管理世界, 2021, 37(7): 130-144.
[19]  赵宸宇, 王文春, 李雪松. 数字化转型如何影响企业全要素生产率[J]. 财贸经济, 2021, 42(7): 114-129.
[20]  Hsieh, C. and Klenow, P.J. (2009) Misallocation and Manufacturing TFP in China and India. Quarterly Journal of Economics, 124, 1403-1448.
https://doi.org/10.1162/qjec.2009.124.4.1403
[21]  刘新争, 侯景懿. 制造业服务化的价值创造与资源配置效应[J]. 江汉论坛, 2023(10): 22-29.
[22]  郭玥. 政府创新补助的信号传递机制与企业创新[J]. 中国工业经济, 2018(9): 98-116.
[23]  温忠麟, 叶宝娟. 中介效应分析: 方法和模型发展[J]. 心理科学进展, 2014, 22(5): 731-745.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133