全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类非线性拉普拉斯方程正解的对称性
Symmetries of Positive Solutions to a Class of Nonlinear Laplace Equations

DOI: 10.12677/aam.2025.141041, PP. 423-432

Keywords: 分数阶拉普拉斯方程,移动平面法,径向对称性
Fractional Laplace Equation
, Moving Plane Method, Radial Symmetry

Full-Text   Cite this paper   Add to My Lib

Abstract:

在分数阶微分方程领域中,通过利用有关拉普拉斯算子的极大值原理,以及移动平面法研究了一类非线性分数阶拉普拉斯方程 ( Δ ) α 2 u( x )+u( x )= | x | p u q ( x ) x R n \ Β 1 ˉ ,其中 0<α<2 p<0 q<0 Β 1 ˉ :={ x R n || x |1 } R n \ Β 1 ˉ :={ x R n || x |>1 } 的正解

References

[1]  Jiang, X.Y. and Xu, Y.M. (2006) Analysis of Fractional Anomalous Diffusion Caused by an Instantaneous Point Source in Disordered Fractal Media. International Journal of Non-Linear Mechanics, 41, 156-165.
https://doi.org/10.1016/j.ijnonlinmec.2004.07.023
[2]  Tarasov, V.E. and Zaslavsky, G.M. (2006) Fractional Dynamics of Systems with Long-Range Interaction. Communications in Nonlinear Science and Numerical Simulation, 11, 885-898.
https://doi.org/10.1016/j.cnsns.2006.03.005
[3]  Constantin, P. (2006) Euler Equations, Navier-Stokes Equations and Turbulence. Mathematical Foundation of Turbulent Viscous Flows, 18711-18743.
[4]  Caffarelli, L. and Vasseur, A. (2010) Drift Diffusion Equations with Fractional Diffusion and the Quasi-Geostrophic Equation. Annals of Mathematics, 171, 1903-1930.
https://doi.org/10.4007/annals.2010.171.1903
[5]  Chen, W. and Zhu, J. (2016) Indefinite Fractional Elliptic Problem and Liouville Theorems. Journal of Differential Equations, 260, 4758-4785.
https://doi.org/10.1016/j.jde.2015.11.029
[6]  Dai, W., Liu, Z. and Lu, G. (2016) Liouville Type Theorems for PDE and IE Systems Involving Fractional Laplacian on a Half Space. Potential Analysis, 46, 569-588.
https://doi.org/10.1007/s11118-016-9594-6
[7]  Ma, L. and Zhao, L. (2009) Classification of Positive Solitary Solutions of the Nonlinear Choquard Equation. Archive for Rational Mechanics and Analysis, 195, 455-467.
https://doi.org/10.1007/s00205-008-0208-3
[8]  Yuan, Z., Cui, X., Chen, W. and Zhuo, R. (2015) Symmetry and Non-Existence of Solutions for a Nonlinear System Involving the Fractional Laplacian. Discrete and Continuous Dynamical Systems, 36, 1125-1141.
https://doi.org/10.3934/dcds.2016.36.1125
[9]  Caffarelli, L. and Silvestre, L. (2007) An Extension Problem Related to the Fractional Laplacian. Communications in Partial Differential Equations, 32, 1245-1260.
https://doi.org/10.1080/03605300600987306
[10]  Chen, W., Li, C. and Li, Y. (2017) A Direct Method of Moving Planes for the Fractional Laplacian. Advances in Mathematics, 308, 404-437.
https://doi.org/10.1016/j.aim.2016.11.038
[11]  Jarohs, S. and Weth, T. (2014) Symmetry via Antisymmetric Maximum Principles in Nonlocal Problems of Variable Order. Annali di Matematica Pura ed Applicata (1923-), 195, 273-291.
https://doi.org/10.1007/s10231-014-0462-y
[12]  Felmer, P., Quaas, A. and Tan, J. (2012) Positive Solutions of the Nonlinear Schrödinger Equation with the Fractional Laplacian. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 142, 1237-1262.
https://doi.org/10.1017/s0308210511000746
[13]  叶方琪. 两类分数阶拉普拉斯方程正解的单调性[D]: [硕士学位论文]. 金华: 浙江师范大学, 2022.
[14]  Duan, Y. and Wei, Y. (2024) Properties of Fractional P-Laplace Equations with Sign-Changing Potential. Nonlinear Analysis, 249, Article ID: 113628.
https://doi.org/10.1016/j.na.2024.113628
[15]  Cao, L. and Fan, L. (2021) Symmetry and Monotonicity of Positive Solutions for a System Involving Fractional P&Q Laplacian in a Ball. Complex Variables and Elliptic Equations, 68, 667-679.
https://doi.org/10.1080/17476933.2021.2009819

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133