|
基于加权张量Schatten-p范数的鲁棒张量补全
|
Abstract:
本文提出一种加权张量Schatten-p范数(0 < p < 1)正则化器用于鲁棒张量补全。建立了与增广拉格朗日乘子相关的相应算法。尽管所提加权张量Schatten-p拟范数是非凸的,但它不仅对奇异值的惩罚较小,而且能有效捕捉低秩特性。
In this paper, we present a weighted tensor Schatten-p norm (0 < p <1) regularizer for robust tensor completion. Corresponding algorithms associated with augmented Lagrangian multipliers are established. Although the proposed weighted tensor Schatten-p quasi-norm is non-convex, it appears not only to less penalize the singular values but also to be effective in capturing the low-rank property.
[1] | Kolda, T.G. and Bader, B.W. (2009) Tensor Decompositions and Applications. SIAM Review, 51, 455-500. https://doi.org/10.1137/07070111x |
[2] | Kilmer, M.E. and Martin, C.D. (2011) Factorization Strategies for Third-Order Tensors. Linear Algebra and Its Applications, 435, 641-658. https://doi.org/10.1016/j.laa.2010.09.020 |
[3] | Kernfeld, E., Kilmer, M. and Aeron, S. (2015) Tensor-Tensor Products with Invertible Linear Transforms. Linear Algebra and Its Applications, 485, 545-570. https://doi.org/10.1016/j.laa.2015.07.021 |
[4] | Song, G., Ng, M.K. and Zhang, X. (2019) Robust Tensor Completion Using Transformed Tensor SVD. |
[5] | Candès, E.J., Wakin, M.B. and Boyd, S.P. (2008) Enhancing Sparsity by Reweighted ℓ1 Minimization. Journal of Fourier Analysis and Applications, 14, 877-905. https://doi.org/10.1007/s00041-008-9045-x |
[6] | Liu, J., Musialski, P., Wonka, P. and Ye, J. (2013) Tensor Completion for Estimating Missing Values in Visual Data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35, 208-220. https://doi.org/10.1109/tpami.2012.39 |
[7] | Xie, Y., Gu, S., Liu, Y., Zuo, W., Zhang, W. and Zhang, L. (2016) Weighted Schatten p-Norm Minimization for Image Denoising and Background Subtraction. IEEE Transactions on Image Processing, 25, 4842-4857. https://doi.org/10.1109/tip.2016.2599290 |