%0 Journal Article %T 基于加权张量Schatten-p范数的鲁棒张量补全
Robust Tensor Completion Based on Weighted Tensor Schatten-p Norm %A 陈梦炜 %J Advances in Applied Mathematics %P 211-216 %@ 2324-8009 %D 2025 %I Hans Publishing %R 10.12677/aam.2025.141024 %X 本文提出一种加权张量Schatten-p范数(0 < p < 1)正则化器用于鲁棒张量补全。建立了与增广拉格朗日乘子相关的相应算法。尽管所提加权张量Schatten-p拟范数是非凸的,但它不仅对奇异值的惩罚较小,而且能有效捕捉低秩特性。
In this paper, we present a weighted tensor Schatten-p norm (0 < p <1) regularizer for robust tensor completion. Corresponding algorithms associated with augmented Lagrangian multipliers are established. Although the proposed weighted tensor Schatten-p quasi-norm is non-convex, it appears not only to less penalize the singular values but also to be effective in capturing the low-rank property. %K 鲁棒张量补全, %K 加权张量Schatten-p范数, %K 非凸, %K 变换张量奇异值分解
Robust Tensor Completion %K Weighted Tensor Schatten-p Norm %K Non-Convex %K Transformed Tensor Singular Value Decomposition %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=106416