|
非线性演化方程的丰富的Jacobi椭圆函数解
|
Abstract:
本文通过把十二个Jacobi椭圆函数分类成四组,从而提出一个新的广义Jacobi椭圆函数展开法来构造非线性演化方程的精确双周期解。在数学软件Maple的帮助下,应用这个非常有效的方法求出了非线性演化方程的许多解,当模数m
0或1时,这些解退化为相应的孤立波解或三角函数解。
In this letter, twelve Jacobi elliptic functions are divided into four groups, and a new general Jacobi elliptic function expansion method is proposed to construct abundant exact doubly periodic solutions of nonlinear evolution equations. As a result, with the aid of computer symbolic computation software (for example, Maple), many exact doubly periodic solutions are obtained which shows that this method is very powerful. When the modulus m
0 or 1, these solutions degenerate to the corresponding solitary wave solutions and trigonometric function (singly periodic) solutions.
[1] | Wang, M. (1995) Solitary Wave Solutions for Variant Boussinesq Equations. Physics Letters A, 199, 169-172. https://doi.org/10.1016/0375-9601(95)00092-h |
[2] | Yan, C. (1996) A Simple Transformation for Nonlinear Waves. Physics Letters A, 224, 77-84. https://doi.org/10.1016/s0375-9601(96)00770-0 |
[3] | Liu, S., Fu, Z., Liu, S. and Zhao, Q. (2001) Jacobi Elliptic Function Expansion Method and Periodic Wave Solutions of Nonlinear Wave Equations. Physics Letters A, 289, 69-74. https://doi.org/10.1016/s0375-9601(01)00580-1 |
[4] | Fu, Z., Liu, S., Liu, S. and Zhao, Q. (2001) New Jacobi Elliptic Function Expansion and New Periodic Solutions of Nonlinear Wave Equations. Physics Letters A, 290, 72-76. https://doi.org/10.1016/s0375-9601(01)00644-2 |
[5] | Shen, S. and Pan, Z. (2003) A Note on the Jacobi Elliptic Function Expansion Method. Physics Letters A, 308, 143-148. https://doi.org/10.1016/s0375-9601(02)01802-9 |
[6] | Yan, Z. (2002) Extended Jacobian Elliptic Function Algorithm with Symbolic Computation to Construct New Doubly-Periodic Solutions of Nonlinear Differential Equations. Computer Physics Communications, 148, 30-42. https://doi.org/10.1016/s0010-4655(02)00465-4 |
[7] | Lawden, D.F. (1989) Elliptic Functions and Applications. Springer-Verlag. |
[8] | 吴文俊. 关于代数方程组的零点——Ritt原理的一个应用[J]. 科学通报, 1985, 30(12): 881-883. |