全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

非线性演化方程的丰富的Jacobi椭圆函数解
Abundant Jacobi Elliptic Function Solutions of Nonlinear Evolution Equations

DOI: 10.12677/aam.2025.141022, PP. 194-202

Keywords: Jacobi椭圆函数,双周期解,非线性演化方程
Jacobi Elliptic Function
, Doubly Periodic Solution, Nonlinear Evolution Equation

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文通过把十二个Jacobi椭圆函数分类成四组,从而提出一个新的广义Jacobi椭圆函数展开法来构造非线性演化方程的精确双周期解。在数学软件Maple的帮助下应用这个非常有效的方法求出了非线性演化方程的许多解,当模数m 0或1时,这些解退化为相应的孤立波解或三角函数解。
In this letter, twelve Jacobi elliptic functions are divided into four groups, and a new general Jacobi elliptic function expansion method is proposed to construct abundant exact doubly periodic solutions of nonlinear evolution equations. As a result, with the aid of computer symbolic computation software (for example, Maple), many exact doubly periodic solutions are obtained which shows that this method is very powerful. When the modulus m 0 or 1, these solutions degenerate to the corresponding solitary wave solutions and trigonometric function (singly periodic) solutions.

References

[1]  Wang, M. (1995) Solitary Wave Solutions for Variant Boussinesq Equations. Physics Letters A, 199, 169-172.
https://doi.org/10.1016/0375-9601(95)00092-h
[2]  Yan, C. (1996) A Simple Transformation for Nonlinear Waves. Physics Letters A, 224, 77-84.
https://doi.org/10.1016/s0375-9601(96)00770-0
[3]  Liu, S., Fu, Z., Liu, S. and Zhao, Q. (2001) Jacobi Elliptic Function Expansion Method and Periodic Wave Solutions of Nonlinear Wave Equations. Physics Letters A, 289, 69-74.
https://doi.org/10.1016/s0375-9601(01)00580-1
[4]  Fu, Z., Liu, S., Liu, S. and Zhao, Q. (2001) New Jacobi Elliptic Function Expansion and New Periodic Solutions of Nonlinear Wave Equations. Physics Letters A, 290, 72-76.
https://doi.org/10.1016/s0375-9601(01)00644-2
[5]  Shen, S. and Pan, Z. (2003) A Note on the Jacobi Elliptic Function Expansion Method. Physics Letters A, 308, 143-148.
https://doi.org/10.1016/s0375-9601(02)01802-9
[6]  Yan, Z. (2002) Extended Jacobian Elliptic Function Algorithm with Symbolic Computation to Construct New Doubly-Periodic Solutions of Nonlinear Differential Equations. Computer Physics Communications, 148, 30-42.
https://doi.org/10.1016/s0010-4655(02)00465-4
[7]  Lawden, D.F. (1989) Elliptic Functions and Applications. Springer-Verlag.
[8]  吴文俊. 关于代数方程组的零点——Ritt原理的一个应用[J]. 科学通报, 1985, 30(12): 881-883.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133