%0 Journal Article
%T 非线性演化方程的丰富的Jacobi椭圆函数解
Abundant Jacobi Elliptic Function Solutions of Nonlinear Evolution Equations
%A 吕大昭
%A 崔艳英
%J Advances in Applied Mathematics
%P 194-202
%@ 2324-8009
%D 2025
%I Hans Publishing
%R 10.12677/aam.2025.141022
%X 本文通过把十二个Jacobi椭圆函数分类成四组,从而提出一个新的广义Jacobi椭圆函数展开法来构造非线性演化方程的精确双周期解。在数学软件Maple的帮助下,应用这个非常有效的方法求出了非线性演化方程的许多解,当模数m
0或1时,这些解退化为相应的孤立波解或三角函数解。
In this letter, twelve Jacobi elliptic functions are divided into four groups, and a new general Jacobi elliptic function expansion method is proposed to construct abundant exact doubly periodic solutions of nonlinear evolution equations. As a result, with the aid of computer symbolic computation software (for example, Maple), many exact doubly periodic solutions are obtained which shows that this method is very powerful. When the modulus m
0 or 1, these solutions degenerate to the corresponding solitary wave solutions and trigonometric function (singly periodic) solutions.
%K Jacobi椭圆函数,
%K 双周期解,
%K 非线性演化方程
Jacobi Elliptic Function
%K Doubly Periodic Solution
%K Nonlinear Evolution Equation
%U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=106414