全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

von Neumann代数上的混合Lie可乘映射
Mixed Lie Multiplicative Maps on von Neumann Algebras

DOI: 10.12677/aam.2025.141021, PP. 185-193

Keywords: von Neumann代数,Lie积,Lie-Skew积,保交换映射,Jordan环同构
von Neumann Algebras
, Lie Products, Lie-Skew Products, Commutativity Preserving Maps, Jordan Ring Isomorphisms

Full-Text   Cite this paper   Add to My Lib

Abstract:

N 是无 I 1 I 2 型中心直和项的von Neumann代数,其单位元分别为 I I 。本文证明非线性双射 Φ:N 混合Lie可乘,即 Φ( [ [ A,B ],C ] )= [ [ Φ( A ),Φ( B ) ],Φ( C ) ] ,A,B,C ,当且仅当存在线性*-同构和共轭线性*-同构的直和 Ψ:N 使得 Φ( A )=Φ( I )Ψ( A ),A ,其中

References

[1]  Miers, C. (1971) Lie Homomorphisms of Operator Algebras. Pacific Journal of Mathematics, 38, 717-735.
https://doi.org/10.2140/pjm.1971.38.717
[2]  Molnár, L. (1996) A Condition for a Subspace of to Be an Ideal. Linear Algebra and Its Applications, 235, 229-234.
https://doi.org/10.1016/0024-3795(94)00143-x
[3]  Šemrl, P. (1990) On Jordan *-Derivations and an Application. Colloquium Mathematicum, 59, 241-251.
https://doi.org/10.4064/cm-59-2-241-251
[4]  Šemrl, P. (1990) Quadratic Functionals and Jordan *-Derivations. Studia Mathematica, 97, 157-165.
https://doi.org/10.4064/sm-97-3-157-165
[5]  Bai, Z., Du, S. and Hou, J. (2008) Multiplicative Lie Isomorphisms between Prime Rings. Communications in Algebra, 36, 1626-1633.
https://doi.org/10.1080/00927870701870475
[6]  An, R.L. and Hou, J.C. (2010) A Characterization of *-Automorphism on . Acta Mathematica Sinica, English Series, 26, 287-294.
https://doi.org/10.1007/s10114-010-8634-1
[7]  Bai, Z. and Du, S. (2012) Maps Preserving Products on von Neumann Algebras. Journal of Mathematical Analysis and Applications, 386, 103-109.
https://doi.org/10.1016/j.jmaa.2011.07.052
[8]  Yang, Z. and Zhang, J. (2018) Nonlinear Maps Preserving the Second Mixed Lie Triple Products on Factor Von Neumann Algebras. Linear and Multilinear Algebra, 68, 377-390.
https://doi.org/10.1080/03081087.2018.1506732
[9]  Kleinecke, D.C. (1957) On Operator Commutators. Proceedings of the American Mathematical Society, 8, 535-536.
https://doi.org/10.1090/s0002-9939-1957-0087914-4
[10]  Brešar, M. and Robert Miers, C. (1993) Commutativity Preserving Mappings of Von Neumann Algebras. Canadian Journal of Mathematics, 45, 695-708.
https://doi.org/10.4153/cjm-1993-039-x
[11]  Fu, F. and An, R. (2018) Equivalent Characterization of *-Derivations on Von Neumann Algebras. Linear and Multilinear Algebra, 67, 527-541.
https://doi.org/10.1080/03081087.2018.1425355

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133