全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Guiera senegalensis Alleviates Ischemia Renal Reperfusion Injury in Albinos Wistar Rats

DOI: 10.4236/ojpathology.2025.151002, PP. 16-27

Keywords: Ischemia Reperfusion, Acute Kidney Injury, Guiera senegalensis, Tubular Degenerescence

Full-Text   Cite this paper   Add to My Lib

Abstract:

Introduction: Renal ischemia-reperfusion (IR) is responsible for injuries such as destruction or dysfunction of tubular epithelial cells with inflammatory reaction and oxidative stress. Several therapeutic methods have been tested to alleviate ischemia-perfusion injury, ranging from using anti-inflammatory drugs, antioxidants, and plants from traditional pharmacopeia to administering RNA interference. However, there is currently no effective therapeutic option available for the treatment of renal IR injury, other than supportive therapies such as renal replacement therapy or hydration. Objective: This present study aimed to evaluate the effect of Guiera senegalensis on renal ischemia reperfusion, a recognized plant for its antioxidant and anti-inflammatory properties. Materials and Methods: Twenty-four (24) adult male Wistar rats were divided into four following groups: SLAM (subjected to a median laparotomy with simulated ischemia); GUIERRA (animals that received 250 mg/kg of guierra senegalensis orally, once a day, for 5 days, with simulated renal ischemia); IR (animals that underwent laparotomy followed by clamping of bilateral renal pedicles for 45 min and followed by reperfusion); GUIERRA + IR (animals given GUIERRA at the dosage of 250 mg/kg per day, for 5 days and then subjected to renal ischemia-reperfusion). Data analysis was performed by ANOVA, and a significance level of p < 0.05 was chosen. Blood and renal tissue samples from all rats were collected after 24 h. Histopathological analysis of the kidneys was performed by evaluating the degree of tubular degeneration, the presence of interstitial lymphocytic infiltrate, proteinaceous casts, necrosis, and loss of the brush border appearance of the tubules using a dedicated score. In the blood samples, creatinine levels were evaluated. Results: Compared with the I/R group, rats in the GUIERRA + IR group showed reduced histopathological damage scores (p < 0.05). Although the differences in creatinine levels were not statistically significant, these were significantly decreased in the treatment group. Conclusion: The results of this preliminary work suggest that Guiera senegalensis decreases the degree of tissue damage in renal ischemia-reperfusion cases. This plant seems to be a promising therapeutic; further studies could help to precise the targets of its compounds on ischemia-reperfusion pathways.

References

[1]  Dufour, L., Ferhat, M., Robin, A., Inal, S., Favreau, F., Goujon, J., et al. (2020) Ischémie reperfusion en transplantation rénale. Néphrologie & Thérapeutique, 16, 388-399.
https://doi.org/10.1016/j.nephro.2020.05.001
[2]  Wei, Q., Xiao, X., Fogle, P. and Dong, Z. (2014) Changes in Metabolic Profiles during Acute Kidney Injury and Recovery Following Ischemia/Reperfusion. PLOS ONE, 9, e106647.
https://doi.org/10.1371/journal.pone.0106647
[3]  Bonventre, J.V. and Yang, L. (2011) Cellular Pathophysiology of Ischemic Acute Kidney Injury. Journal of Clinical Investigation, 121, 4210-4221.
https://doi.org/10.1172/jci45161
[4]  Lin, Y., Xu, L., Lin, H., Cui, W., Jiao, Y., Wang, B., et al. (2024) Network Pharmacology and Experimental Validation to Investigate the Mechanism of Nao-Ling-Su Capsule in the Treatment of Ischemia/Reperfusion-Induced Acute Kidney Injury. Journal of Ethnopharmacology, 326, Article ID: 117958.
https://doi.org/10.1016/j.jep.2024.117958
[5]  Damo, J.L.K., Boiangiu, R.S., Brinza, I., Kenko Djoumessi, L.B., Rebe, R.N., Kamleu, B.N., et al. (2022) Neuroprotective Potential of Guiera senegalensis (Combretaceae) Leaf Hydroethanolic Extract against Cholinergic System Dysfunctions and Oxidative Stress in Scopolamine-Induced Cognitive Impairment in Zebrafish (Danio rerio). Plants, 11, Article 1149.
https://doi.org/10.3390/plants11091149
[6]  Dirar, A.I. and Devkota, H.P. (2021) Ethnopharmacological Uses, Phytochemistry and Pharmacological Activities of Guiera senegalensis J.F. Gmel. (Combretaceae). Journal of Ethnopharmacology, 267, Article ID: 113433.
https://doi.org/10.1016/j.jep.2020.113433
[7]  Fels, J.A. and Manfredi, G. (2019) Sex Differences in Ischemia/Reperfusion Injury: The Role of Mitochondrial Permeability Transition. Neurochemical Research, 44, 2336-2345.
https://doi.org/10.1007/s11064-019-02769-6
[8]  OECD (1981) Test No. 410: Repeated Dose Dermal Toxicity: 21/28-Day Study. OECD.
https://doi.org/10.1787/9789264070745-en
[9]  Cheng, Y., Tu, Y., Chou, Y. and Lai, C. (2022) Protocol for Renal Ischemia-Reperfusion Injury by Flank Incisions in Mice. STAR Protocols, 3, Article ID: 101678.
https://doi.org/10.1016/j.xpro.2022.101678
[10]  Vallés, P.G., Gil Lorenzo, A.F., Garcia, R.D., Cacciamani, V., Benardon, M.E. and Costantino, V.V. (2023) Toll-like Receptor 4 in Acute Kidney Injury. International Journal of Molecular Sciences, 24, Article 1415.
https://doi.org/10.3390/ijms24021415
[11]  Niemann-Masanek, U., Mueller, A., Yard, B.A., Waldherr, R. and van der Woude, F.J. (2002) B7-1 (CD80) and B7-2 (CD 86) Expression in Human Tubular Epithelial Cells in Vivo and in Vitro. Nephron, 92, 542-556.
https://doi.org/10.1159/000064084
[12]  Li, L. and Okusa, M.D. (2010) Macrophages, Dendritic Cells, and Kidney Ischemia-Reperfusion Injury. Seminars in Nephrology, 30, 268-277.
https://doi.org/10.1016/j.semnephrol.2010.03.005
[13]  Li, L., Huang, L., Vergis, A.L., Ye, H., Bajwa, A., Narayan, V., et al. (2010) IL-17 Produced by Neutrophils Regulates IFN-γ-Mediated Neutrophil Migration in Mouse Kidney Ischemia-Reperfusion Injury. Journal of Clinical Investigation, 120, 331-342.
https://doi.org/10.1172/jci38702
[14]  Walker, L.M., Walker, P.D., Imam, S.Z., Ali, S.F. and Mayeux, P.R. (2000) Evidence for Peroxynitrite Formation in Renal Ischemia-Reperfusion Injury: Studies with the Inducible Nitric Oxide Synthase Inhibitor L-N(6)-(1-Iminoethyl)Lysine. The Journal of Pharmacology and Experimental Therapeutics, 295, 417-422.
[15]  Ysebaert, D.K., De Greef, K.E., De Beuf, A., Van Rompay, A.R., Vercauteren, S., Persy, V.P., et al. (2004) T Cells as Mediators in Renal Ischemia/Reperfusion Injury. Kidney International, 66, 491-496.
https://doi.org/10.1111/j.1523-1755.2004.761_4.x
[16]  Molitoris, B.A., Dahl, R. and Geerdes, A. (1992) Cytoskeleton Disruption and Apical Redistribution of Proximal Tubule Na(+)-K(+)-Atpase during Ischemia. American Journal of Physiology-Renal Physiology, 263, F488-F495.
https://doi.org/10.1152/ajprenal.1992.263.3.f488
[17]  Meldrum, K.K., Meldrum, D.R., Meng, X., Ao, L. and Harken, A.H. (2002) TNF-α-Dependent Bilateral Renal Injury Is Induced by Unilateral Renal Ischemia-Reperfusion. American Journal of Physiology-Heart and Circulatory Physiology, 282, H540-H546.
https://doi.org/10.1152/ajpheart.00072.2001
[18]  Liu, X.B. and Liu, W.J. (2022) The Role of Regulated Cell Death in Renal Ischemia-Reperfusion Injury. Acta Physiologica Sinica, 74, 320-332.
http://www.actaps.com.cn
[19]  Peng, P., Zou, J., Zhong, B., Zhang, G., Zou, X. and Xie, T. (2022) Protective Effects and Mechanisms of Flavonoids in Renal Ischemia-Reperfusion Injury. Pharmacology, 108, 27-36.
https://doi.org/10.1159/000527262
[20]  de Oliveira, B.K.F., de Oliveira Silva, E., Ventura, S., Vieira, G.H.F., de Pina Victoria, C.D., Volpini, R.A., et al. (2023) Amazonia Phytotherapy Reduces Ischemia and Reperfusion Injury in the Kidneys. Cells, 12, Article 1688.
https://doi.org/10.3390/cells12131688
[21]  Sayhan, M.B., Kanter, M., Oguz, S. and Erboga, M. (2012) Protective Effect of Urtica Dioica L. on Renal Ischemia/Reperfusion Injury in Rat. Journal of Molecular Histology, 43, 691-698.
https://doi.org/10.1007/s10735-012-9436-9
[22]  Diatta, W., Fall, A.D., Dièye, A.M., Faty, S., Bassène, E. and Faye, B. (2007) Mise en evidence de l’activité antitussive des alcaloïdes totaux de Guiera senegalensis Lam. chez le cobaye [Experimental Evidence of against Cough Activity of Total Alkaloids from Guiera senegalensis Lam. in Guinea Pig]. Dakar Medical, 52, 130-134.
[23]  Ficarra, R., Ficarra, P., Tommasini, S., Carulli, M., Melardi, S., Di Bella, M.R., Calabrò, M.L., De Pasquale, R., Germanò, M.P., Sanogo, R. and Casuscelli, F. (1997) Isolation and Characterization of Guiera senegalensis J.F. Gmel. Active Principles. Boll Chim Farm, 136, 454-459.
[24]  Silva, O. and Gomes, E.T. (2003) Guieranone A, a Naphthyl Butenone from the Leaves of Guiera senegalensis with Antifungal Activity. Journal of Natural Products, 66, 447-449.
https://doi.org/10.1021/np0204904
[25]  Siddique, H.R. and Saleem, M. (2011) Beneficial Health Effects of Lupeol Triterpene: A Review of Preclinical Studies. Life Sciences, 88, 285-293.
https://doi.org/10.1016/j.lfs.2010.11.020
[26]  Kapisiz, A., Kaya, C., Eryilmaz, S., Karabulut, R., Turkyilmaz, Z., Inan, M., et al. (2024) Protective Effects of Lupeol in Rats with Renal Ischemiareperfusion Injury. Experimental and Therapeutic Medicine, 28, Article No. 313.
https://doi.org/10.3892/etm.2024.12602
[27]  Diouf, A., Cisse, A., Gueye, S.S., Mendes, V., Siby, T., Diouf Diop, R.M. and Bassene, E. (2000) Etude toxicologique de Guiera senegalensis Lam (Combretaceae) [Toxocological Study of Guiera senegalensis Lam (Combretaceae)]. Dakar Medical, 45, 89-94.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133