全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于OrcaFlex的潜标系统在布放过程中的动力学分析
Dynamics Analysis of Buoy System during Deployment Process Based on OrcaFlex

DOI: 10.12677/ojtt.2025.141011, PP. 89-107

Keywords: 潜标系统,动力学响应,标锚法,集中质量法
Buoy System
, Dynamic Response, Anchor-Last Deployment, Lumped Mass Method

Full-Text   Cite this paper   Add to My Lib

Abstract:

潜标系统在海洋工程,海洋观测和海洋养殖中被广泛应用。本文构建了潜标系统的动力学模型,在多种海洋环境中针对于以潜标为模型的单点系泊系统,讨论了其投放过程中的动力学响应和系统受到的载荷。文中采用集中质量下多边形近似法讨论了系泊系统的动力学特性并考虑了节点之间水动力作用和缆绳的弹性形变。在时域内搭建系泊系统动力学模型并对系统中各节点的运动、整体姿态变化和缆绳受力状况进行分析。在布放过程中,通过分析潜标系统在不同海洋条件下的定位数据以及各个系统部分所受到的水动力影响和标体布放时的姿态变化规律,利用了水动力分析软件OrcaFlex构建了一套简化模型。其涵盖了在各种海况和工作状态下的情况,旨在精确计算系统在布放阶段的动态响应。
The buoy system is one of the most commonly used positioning methods in the fields of marine engineering, ocean observation, and marine aquaculture. In this paper, the dynamics modeling of the buoy system is carried out. The dynamic response and load of the single point mooring system based on the model of the buoy system during deployment process are studied in different marine environments. The polygon approximation method based on concentrated mass is used to study the dynamics performance of the mooring system. Considering the hydrodynamic force of each node and the elastic deformation of the cable, the dynamics model of the mooring system was carried out in the time domain, analyzing the motion of the nodes, the attitude of the system and the force of the cable in the mooring system. Considering the positioning information of the buoy system during the deployment process, as well as the hydrodynamic effects of each part of the system and the attitude changes during the deployment process of the buoy, a simplified hydrodynamic analysis model under different sea conditions and different working conditions is established by using the hydrodynamic analysis software OrcaFlex, and the dynamic response of the system during the deployment process is calculated.

References

[1]  王明午. 海洋潜标系统的静力分析和姿态计算[J]. 海洋技术, 2001, 20(4): 41-47.
[2]  王婷. 国外海洋潜标系统的发展[C]//中国声学学会水声学分会. 中国声学学会水声学分会2011年全国水声学学术会议论文集. 杭州: 杭州应用声学研究所, 2011: 324-326.
[3]  杨永春, 张会杰, 田伟辉, 等. 海流作用下潜标-系留系统耦合动力响应试验研究[J]. 海洋技术, 2012, 31(3): 1-5.
[4]  Berteaux, H.O. (1976) Buoy Engineering. Wiley.
[5]  Ostrom, W., Kemp, J., Krishfield, R. and Proshutinsky, A. (2004) Beaufort Gyre Freshwater Experiment: Deployment Operations and Technology 2003. Woods Hole Oceanographic Institution.
https://doi.org/10.1575/1912/48

[6]  Wang, Y., Tuo, H., Li, L., Zhao, Y., Qin, H. and An, C. (2018) Dynamic Simulation of Installation of the Subsea Cluster Manifold by Drilling Pipe in Deep Water Based on Orcaflex. Journal of Petroleum Science and Engineering, 163, 67-78.
https://doi.org/10.1016/j.petrol.2017.12.049

[7]  Ma, Y., Mao, Z.Y., Qin, J., Ding, W.J., Xiao, Y.J., Meng, X.Y., et al. (2020) A Quick Deployment Method for Sonar Buoy Detection under the Overview Situation of Underwater Cluster Targets. IEEE Access, 8, 11-25.
https://doi.org/10.1109/access.2019.2961555

[8]  Velasco, D.W., Ogle, M. and Leung, P. (2019) Long Range Current Measurement from a Surface Buoy in the Gulf of Mexico. OCEANS 2019 MTS/IEEE SEATTLE, Seattle, 27-31 October 2019, 1-10.
https://doi.org/10.23919/oceans40490.2019.8962659

[9]  Falleni, S., Unal, D., Neerman, A., Enhos, K., Demirors, E., Basagni, S., et al. (2020) Design, Development, and Testing of a Smart Buoy for Underwater Testbeds in Shallow Waters. Global Oceans 2020: SingaporeU.S. Gulf Coast, Biloxi, 5-30 October 2020, 1-7.
https://doi.org/10.1109/ieeeconf38699.2020.9389065

[10]  Zhong, C., Liu, J.A., Liang, Q.Y., et al. (2022) Motion Simulation Analysis of Bottom Supported Submersible Buoyant Release System Based on Orca Flex. Chinese Journal of Engineering Geophysics, 19, 860-867.
[11]  Thorstein, R.. Rykkje, T.T. and Lokkebo, H. (2019) Modelling Buoy Motion at Sea. Proceedings of the ASME International Mechanical Engineering Congress and Exposition. 2019: IMECE 2019, Salt Lake City, 11-14 November 2019.
[12]  Amaechi, C.V., Wang, F. and Ye, J. (2022) Numerical Studies on CALM Buoy Motion Responses and the Effect of Buoy Geometry Cum Skirt Dimensions with Its Hydrodynamic Waves-Current Interactions. Ocean Engineering, 244, Article 110378.
https://doi.org/10.1016/j.oceaneng.2021.110378

[13]  Trask, R.P. and Weller, R.A. (2001) Moorings. In: Encyclopedia of Ocean Sciences, Elsevier, 1850-1860.
https://doi.org/10.1006/rwos.2001.0304

[14]  杨坤汉, 王明午. 绷紧型单点锚定潜标系统布放回收操作方法[J]. 海洋技术, 1989(1): 51-69.
[15]  Chang, Z., Tang, Y., Li, H., Yang, J. and Wang, L. (2012) Analysis for the Deployment of Single-Point Mooring Buoy System Based on Multi-Body Dynamics Method. China Ocean Engineering, 26, 495-506.
https://doi.org/10.1007/s13344-012-0037-x

[16]  Zheng, Z.Q., Dai, Y., Gao, D.X., Zhao, X.L. and Chang, Z.Y. (2013) Dynamics of Deployment for Mooring Buoy System Based on ADAMS Environment. Advanced Materials Research, 819, 328-333.
https://doi.org/10.4028/www.scientific.net/amr.819.328

[17]  Yu, M. (2010) Research on Fuzzy Sliding Mode Control of a Remotely Operated Underwater Vehicle. South China University of Technology. (In Chinese)
[18]  Zhu, K.Q., Zheng, D.C., Zhou, J.H., et al. (2007) Dynamic Analysis on Ocean Cables System with Lumped Parameter Approach. Navigation of China, 3, 10-12.
[19]  Wang, L. (2012) Study on Dynamics of Single-Point Mooring Systems. Ocean University of China. (In Chinese)
[20]  董鹏. 海洋SPAR平台挠性立管三维仿真动力响应[D]: [硕士学位论文]. 宁波: 宁波大学, 2011.
[21]  Hamilton, A., Chaffey, M., Mellinger, E., Erickson, J. and McBride, L. (2003) Dynamic Modeling and Actual Performance of the MOOS Test Mooring. Oceans 2003. Celebrating the Past... Teaming Toward the Future (IEEE Cat. No.03CH37492), San Diego, 22-26 September 2003, 2574-2581.
https://doi.org/10.1109/oceans.2003.178315

[22]  Lan, Z.G., Yang, S.H., Liu, L.W., Gong, D.J., Li, S.R. and Zhu, S.L. (2008) The Design and Attitude Analysis of a Subsurface Buoy for Deep Sea Current Profiling. Marine Sciences, 32, 21-24. (In Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133