|
一类次线性Schr?dinger-Maxwell方程无穷多非平凡解的存在性
|
Abstract:
本文借助变分法和临界点理论研究一类次线性Schr?dinger-Maxwell方程无穷多非平凡解的存在性问题
其中
,
,
。在
符合相关条件下,
。
In this paper, we discuss the existence of infinitely many nontrivial solutions for the following kind of sublinear Schr?dinger-Maxwell equation by using the variational
[1] | Adams, R.A. and Fournier, J.F. (2003) Sobolev Spaces. 2nd Edition, Academic Press. |
[2] | Alves, C.O., Souto, M.A.S. and Soares, S.H.M. (2011) Schrödinger-Poisson Equations without Ambrosetti-Rabinowitz Condition. Journal of Mathematical Analysis and Applications, 377, 584-592. https://doi.org/10.1016/j.jmaa.2010.11.031 |
[3] | Ambrosetti, A. and Ruiz, D. (2008) Multiple Bound States for the Schrödinger-Poisson Problem. Communications in Contemporary Mathematics, 10, 391-404. https://doi.org/10.1142/s021919970800282x |
[4] | Azzollini, A. and dʼAvenia, P. (2012) On a System Involving a Critically Growing Nonlinearity. Journal of Mathematical Analysis and Applications, 387, 433-438. https://doi.org/10.1016/j.jmaa.2011.09.012 |
[5] | Pomponio, A., Azzollini, A. and d’Avenia, P. (2010) On the Schrödinger-Maxwell Equations under the Effect of a General Nonlinear Term. Annales de l’Institut Henri Poincaré C, Analyse non linéaire, 27, 779-791. https://doi.org/10.1016/j.anihpc.2009.11.012 |
[6] | 秦栋栋. 薛定谔方程的基态解和多解性问题[D]: [硕士学位论文]. 长沙: 中南大学, 2014. |
[7] | Bao, G. (2016) Infinitely Many Small Solutions for a Sublinear Schrödinger-Poisson System with Sign-Changing Potential. Computers & Mathematics with Applications, 71, 2082-2088. https://doi.org/10.1016/j.camwa.2016.04.006 |
[8] | Sun, J. (2012) Infinitely Many Solutions for a Class of Sublinear Schrödinger-Maxwell Equations. Journal of Mathematical Analysis and Applications, 390, 514-522. https://doi.org/10.1016/j.jmaa.2012.01.057 |
[9] | Bartsch, T. and Qiang Wang, Z. (1995) Existence and Multiplicity Results for Some Superlinear Elliptic Problems on Rn. Communications in Partial Differential Equations, 20, 1725-1741. https://doi.org/10.1080/03605309508821149 |
[10] | Coclite, G.M. (2003) A Multiplicity Result for the Nonlinear Schrödinger-Maxwell Equations. Communications in Applied Analysis, 7, 417-423. |
[11] | 席慧慧. 一类薛定谔泊松系统无穷多解的存在性[J]. 太原师范学院学报, 2013, 12(3): 32-35. |
[12] | 叶一蔚, 唐春雷. 带有超线性项或次线性项的Schrödinger-Poisson系统解的存在性与多重性[J]. 数学物理学报, 2015, 35(4): 668-682. |
[13] | Willem, M. (1996) Minimax Theorems. Birkhäuser. |
[14] | Bartsch, T., Wang, Z. and Willem, M. (2005) The Dirichlet Problem for Superlinear Elliptic Equations. Handbook of Differential Equations: Stationary Partial Differential Equations, 2, 1-55. https://doi.org/10.1016/s1874-5733(05)80009-9 |
[15] | Yang, M.B. and Ding Y.H. (2010) Semiclassical Solutions for Nonlinear Schrödinger-Maxwell Equations. Scientia Sinica, 40, 517-620. |