全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类次线性Schr?dinger-Maxwell方程无穷多非平凡解的存在性
The Existence of Infinitely Many Nontrivial Solutions for a Kind of Schr?dinger-Maxwell Equation with Sublinear Potentials

DOI: 10.12677/aam.2025.141014, PP. 105-111

Keywords: Schr?dinger-Maxwell方程,非平凡解,临界点理论,变分法,次线性
Schr?dinger-Maxwell Equation
, Nontrivial Solutions, Critical Point Theory, Variational Methods, Sublinear Potentials

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文借助变分法和临界点理论研究一类次线性Schr?dinger-Maxwell方程无穷多非平凡解的存在性问题 { Δu+V( x )u+αf( u )=g( x,u ), x R 3 , Δ=2αF( u ), x R 3 . 其中 α>0 V( x ) C 1 ( R 3 ,R ) V( x )>0 。在 f,g 符合相关条件下, p( 1,2 )
In this paper, we discuss the existence of infinitely many nontrivial solutions for the following kind of sublinear Schr?dinger-Maxwell equation by using the variational

References

[1]  Adams, R.A. and Fournier, J.F. (2003) Sobolev Spaces. 2nd Edition, Academic Press.
[2]  Alves, C.O., Souto, M.A.S. and Soares, S.H.M. (2011) Schrödinger-Poisson Equations without Ambrosetti-Rabinowitz Condition. Journal of Mathematical Analysis and Applications, 377, 584-592.
https://doi.org/10.1016/j.jmaa.2010.11.031

[3]  Ambrosetti, A. and Ruiz, D. (2008) Multiple Bound States for the Schrödinger-Poisson Problem. Communications in Contemporary Mathematics, 10, 391-404.
https://doi.org/10.1142/s021919970800282x

[4]  Azzollini, A. and dʼAvenia, P. (2012) On a System Involving a Critically Growing Nonlinearity. Journal of Mathematical Analysis and Applications, 387, 433-438.
https://doi.org/10.1016/j.jmaa.2011.09.012

[5]  Pomponio, A., Azzollini, A. and d’Avenia, P. (2010) On the Schrödinger-Maxwell Equations under the Effect of a General Nonlinear Term. Annales de l’Institut Henri Poincaré C, Analyse non linéaire, 27, 779-791.
https://doi.org/10.1016/j.anihpc.2009.11.012

[6]  秦栋栋. 薛定谔方程的基态解和多解性问题[D]: [硕士学位论文]. 长沙: 中南大学, 2014.
[7]  Bao, G. (2016) Infinitely Many Small Solutions for a Sublinear Schrödinger-Poisson System with Sign-Changing Potential. Computers & Mathematics with Applications, 71, 2082-2088.
https://doi.org/10.1016/j.camwa.2016.04.006

[8]  Sun, J. (2012) Infinitely Many Solutions for a Class of Sublinear Schrödinger-Maxwell Equations. Journal of Mathematical Analysis and Applications, 390, 514-522.
https://doi.org/10.1016/j.jmaa.2012.01.057

[9]  Bartsch, T. and Qiang Wang, Z. (1995) Existence and Multiplicity Results for Some Superlinear Elliptic Problems on Rn. Communications in Partial Differential Equations, 20, 1725-1741.
https://doi.org/10.1080/03605309508821149

[10]  Coclite, G.M. (2003) A Multiplicity Result for the Nonlinear Schrödinger-Maxwell Equations. Communications in Applied Analysis, 7, 417-423.
[11]  席慧慧. 一类薛定谔泊松系统无穷多解的存在性[J]. 太原师范学院学报, 2013, 12(3): 32-35.
[12]  叶一蔚, 唐春雷. 带有超线性项或次线性项的Schrödinger-Poisson系统解的存在性与多重性[J]. 数学物理学报, 2015, 35(4): 668-682.
[13]  Willem, M. (1996) Minimax Theorems. Birkhäuser.
[14]  Bartsch, T., Wang, Z. and Willem, M. (2005) The Dirichlet Problem for Superlinear Elliptic Equations. Handbook of Differential Equations: Stationary Partial Differential Equations, 2, 1-55.
https://doi.org/10.1016/s1874-5733(05)80009-9

[15]  Yang, M.B. and Ding Y.H. (2010) Semiclassical Solutions for Nonlinear Schrödinger-Maxwell Equations. Scientia Sinica, 40, 517-620.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133