%0 Journal Article %T 一类次线性Schrödinger-Maxwell方程无穷多非平凡解的存在性
The Existence of Infinitely Many Nontrivial Solutions for a Kind of Schrödinger-Maxwell Equation with Sublinear Potentials %A 汪敏庆 %A 游仁青 %A 陆晓娟 %J Advances in Applied Mathematics %P 105-111 %@ 2324-8009 %D 2025 %I Hans Publishing %R 10.12677/aam.2025.141014 %X 本文借助变分法和临界点理论研究一类次线性Schrödinger-Maxwell方程无穷多非平凡解的存在性问题 { Δu+V( x )u+αϕf( u )=g( x,u ), x R 3 , Δϕ=2αF( u ), x R 3 . 其中 α>0 V( x ) C 1 ( R 3 ,R ) V( x )>0 。在 f,g 符合相关条件下, p( 1,2 )
In this paper, we discuss the existence of infinitely many nontrivial solutions for the following kind of sublinear Schrödinger-Maxwell equation by using the variational %K Schrö %K dinger-Maxwell方程, %K 非平凡解, %K 临界点理论, %K 变分法, %K 次线性
Schrö %K dinger-Maxwell Equation %K Nontrivial Solutions %K Critical Point Theory %K Variational Methods %K Sublinear Potentials %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=105378