|
E-Commerce Letters 2025
基于改进NSGA-II的多目标生鲜冷链配送路径优化
|
Abstract:
随着我国电商行业的迅猛发展以及国家对相关减排政策的大力倡导与推行,针对物流企业使用电动冷藏车开展生鲜冷链运输的具体情境,构建了一个能够同时考虑企业在配送过程中所产生的综合运输成本、碳排放量及配送水平的多目标优化模型。在NSGA-II算法中引入了佳点集生成初始种群、自适应交叉变异概率和模拟退火辅助局部搜索的改进策略。实验结果显示,改进后的算法有效克服了传统NSGA-II算法对初始种群敏感、局部搜索能力有限、收敛速度较慢等问题,获得了更优质的Pareto解集,从而验证了该改进算法的有效性。
With the rapid development of China’s e-commerce industry and the country’s strong advocacy and implementation of relevant emission reduction policies, a multi-objective optimization model is constructed to consider the comprehensive transportation cost, carbon emissions and distribution level generated by enterprises in the distribution process, aiming at the specific situation of logistics enterprises using electric refrigerated trucks to carry out fresh cold chain transportation. In NSGA-II algorithm, the improved strategies of generating initial population with good point set, adaptive cross-mutation probability and simulated annealing assisted local search are introduced. Experimental results show that the improved algorithm effectively overcomes the problems of the traditional NSGA-II algorithm, such as sensitivity to the initial population, limited local search ability and slow convergence speed, and obtains a better Pareto solution set, thus verifying the effectiveness of the improved algorithm.
[1] | Dantzig, G.B. and Ramser, J.H. (1959) The Truck Dispatching Problem. Management Science, 6, 80-91. https://doi.org/10.1287/mnsc.6.1.80 |
[2] | Bruglieri, M., Paolucci, M. and Pisacane, O. (2023) A Matheuristic for the Electric Vehicle Routing Problem with Time Windows and a Realistic Energy Consumption Model. Computers & Operations Research, 157, Article ID: 106261. https://doi.org/10.1016/j.cor.2023.106261 |
[3] | Wang, Y., Zhou, J., Sun, Y., Fan, J., Wang, Z. and Wang, H. (2023) Collaborative Multidepot Electric Vehicle Routing Problem with Time Windows and Shared Charging Stations. Expert Systems with Applications, 219, Article ID: 119654. https://doi.org/10.1016/j.eswa.2023.119654 |
[4] | Xiao, J., Du, J., Cao, Z., Zhang, X. and Niu, Y. (2023) A Diversity-Enhanced Memetic Algorithm for Solving Electric Vehicle Routing Problems with Time Windows and Mixed Backhauls. Applied Soft Computing, 134, Article ID: 110025. https://doi.org/10.1016/j.asoc.2023.110025 |
[5] | 常海平, 李婉莹, 董福贵, 等. 基于NSGA-Ⅱ的冷链物流配送路径多目标优化[J]. 交通科技与经济, 2022, 24(2): 8-17. |
[6] | 杨亮, 向万里, 王丽, 等. 基于改进NSGA-Ⅱ的冷链物流多目标车辆路径优化[J]. 兰州工业学院学报, 2022, 29(2): 87-93. |
[7] | 陈照学. 基于改进NSGA-Ⅱ算法的辽西地区冷链物流路径优化研究[D]: [硕士学位论文]. 阜新: 辽宁工程技术大学, 2023. |
[8] | 郭亚辉. 基于PSO改进NSGA-Ⅱ算法的多目标冷链物流路径优化[D]: [硕士学位论文]. 阜新: 辽宁工程技术大学, 2022. |
[9] | 陈靖, 董明. 考虑生鲜品新鲜度的集配策略研究[J]. 系统工程理论与实践, 2018, 38(8): 2018-2031. |
[10] | Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. (2002) A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6, 182-197. https://doi.org/10.1109/4235.996017 |
[11] | 黄涛, 邓斌, 何栋, 等. 一种改进的自适应遗传算法[J]. 计算机仿真, 2024, 41(3): 347-351, 464. |