全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于稀疏逻辑回归的信用风险评估模型
Credit Risk Assessment Model Based on Sparse Logistic Regression

DOI: 10.12677/ecl.2025.141168, PP. 1354-1360

Keywords: 信用风险,稀疏优化,逻辑回归
Credit Risk
, Sparse Optimization, Logistic Regression

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着经济的持续增长和金融科技的不断发展,个人信贷作为一种满足消费需求的金融工具,其市场规模自然随之扩大。受到经济下行压力、不良贷款行为增加与各种突发变故的影响,个人信贷违约率逐渐上升,一个完善且高效的个人信用评估模型其重要性不言而喻。在信用评估过程中,通过一系列的具体指标和因素去判断个人的信用风险,在庞大的市场规模下,需要巨量的资源投入。本文提出了一种基于稀疏优化的逻辑回归模型,其能在保持一定准确度的情况下快速地得出个人风险评估结果。最后通过真实数据,验证所提出稀疏逻辑回归模型的有效性。
With the continuous growth of the economy and the development of financial technology, the market scale of personal credit, as a financial tool to satisfy consumer demand, has naturally expanded. Influenced by the economic downward pressure, the increase of non-performing loan behaviors and various unexpected changes, the default rate of personal credit is gradually rising, and the importance of a perfect and efficient personal credit assessment model is self-evident. In the process of credit assessment, a series of specific indicators and factors are used to judge the credit risk of an individual, which requires a huge amount of resources under a huge market scale. In this paper, a logistic regression model based on sparse optimization is proposed, which can quickly produce individual risk assessment results while maintaining a certain degree of accuracy. Finally, the effectiveness of the proposed sparse logistic regression model is verified by real data.

References

[1]  方匡南, 章贵军, 张惠颖. 基于Lasso-Logistic模型的个人信用风险预警方法[J]. 数量经济技术经济研究, 2014, 31(2): 125-136.
[2]  胡越. 正则化下支持向量机的信用风险评估[D]: [硕士毕业论文]. 上海: 上海师范大学, 2017.
[3]  许迩璇. 基于随机森林模型的个人信贷风险研究[J]. 审计与理财, 2024(9): 55-58.
[4]  Chen, S.S., Donoho, D.L. and Saunders, M.A. (2001) Atomic Decomposition by Basis Pursuit. SIAM Review, 43, 129-159.
https://doi.org/10.1137/s003614450037906x
[5]  Candes, E.J. and Tao, T. (2005) Decoding by Linear Programming. IEEE Transactions on Information Theory, 51, 4203-4215.
https://doi.org/10.1109/tit.2005.858979
[6]  Natarajan, B.K. (1995) Sparse Approximate Solutions to Linear Systems. SIAM Journal on Computing, 24, 227-234.
https://doi.org/10.1137/s0097539792240406
[7]  Chartrand, R. and Staneva, V. (2008) Restricted Isometry Properties and Nonconvex Compressive Sensing. Inverse Problems, 24, Article 035020.
https://doi.org/10.1088/0266-5611/24/3/035020
[8]  Wang, H., Zhang, F., Shi, Y. and Hu, Y. (2021) Nonconvex and Nonsmooth Sparse Optimization via Adaptively Iterative Reweighted Methods. Journal of Global Optimization, 81, 717-748.
https://doi.org/10.1007/s10898-021-01093-0
[9]  Zhou, S., Xiu, X., Wang, Y., et al. (2023) Revisiting Lq () Norm Regularized Optimization. arXiv: 2306.14394.
[10]  Peng, D., Xiu, N. and Yu, J. (2017) S1/2 Regularization Methods and Fixed Point Algorithms for Affine Rank Minimization Problems. Computational Optimization and Applications, 67, 543-569.
https://doi.org/10.1007/s10589-017-9898-5
[11]  Peng, D., Xiu, N. and Yu, J. (2018) Global Optimality Condition and Fixed Point Continuation Algorithm for Non-Lipschitz Regularized Matrix Minimization. Science China Mathematics, 61, 1139-1152.
https://doi.org/10.1007/s11425-016-9107-y
[12]  张岗岗. 稀疏组Lasso方法在个人信贷风险评估中的应用[D]: [硕士学位论文]. 济南: 山东大学, 2018.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133