|
T淋巴细胞亚群在NAFLD发病机制中的作用
|
Abstract:
非酒精性脂肪性肝病(Non-alcoholic fatty liver disease, NAFLD)包括一系列的肝脏表现,从肝脏脂肪变性开始,可能演变为非酒精性脂肪性肝炎(Non-alcoholic steatohepatitis, NASH)、纤维化、肝硬化甚至肝细胞癌(Hepatocellular carcinoma, HCC)。其发病率在全球范围内呈上升趋势。尽管NAFLD是一种与代谢紊乱相关的疾病,但它也涉及多种免疫细胞介导的炎症过程。多种免疫细胞通过分泌促炎或抗炎因子来促进或抑制肝细胞炎症,从而影响NAFLD进程。T细胞作为适应性免疫中重要的一环,包括多种淋巴细胞亚群,在NAFLD的进展中发挥着关键作用。本文综述了T淋巴细胞亚群在NAFLD发病机制中的作用,以期为非酒精性脂肪性肝病的药物干预提供新策略。
Non-alcoholic fatty liver disease (NAFLD) encompasses a series of liver manifestations. Starting from hepatic steatosis, it may progress to non-alcoholic steatohepatitis (NASH), fibrosis, liver cirrhosis and even hepatocellular carcinoma (HCC). The incidence of NAFLD is on the rise globally. Although NAFLD is a disease concerning metabolic disorders, it also involves various inflammatory processes mediated by immune cells. Various immune cells promote or inhibit liver cell inflammation by secreting pro-inflammatory or anti-inflammatory factors to influence the progression of non-alcoholic fatty liver disease (NAFLD). T cells, as an important part of adaptive immunity, include multiple lymphocyte subsets and play a crucial role in the progression of NAFLD. We review the roles of T lymphocyte subsets in the pathogenesis of NAFLD, expecting to provide new strategies for the pharmaceutical intervention of non-alcoholic fatty liver disease.
[1] | Lazarus, J.V., Mark, H.E., Villota-Rivas, M., Palayew, A., Carrieri, P., Colombo, M., et al. (2022) The Global NAFLD Policy Review and Preparedness Index: Are Countries Ready to Address This Silent Public Health Challenge? Journal of Hepatology, 76, 771-780. https://doi.org/10.1016/j.jhep.2021.10.025 |
[2] | Powell, E.E., Wong, V.W. and Rinella, M. (2021) Non-Alcoholic Fatty Liver Disease. The Lancet, 397, 2212-2224. https://doi.org/10.1016/s0140-6736(20)32511-3 |
[3] | White, L., Fishman, P., Basu, A., Crane, P.K., Larson, E.B. and Coe, N.B. (2019) Medicare Expenditures Attributable to Dementia. Health Services Research, 54, 773-781. https://doi.org/10.1111/1475-6773.13134 |
[4] | Eslam, M., Newsome, P.N., Sarin, S.K., Anstee, Q.M., Targher, G., Romero-Gomez, M., et al. (2020) A New Definition for Metabolic Dysfunction-Associated Fatty Liver Disease: An International Expert Consensus Statement. Journal of Hepatology, 73, 202-209. https://doi.org/10.1016/j.jhep.2020.03.039 |
[5] | Lindenmeyer, C.C. and McCullough, A.J. (2018) The Natural History of Nonalcoholic Fatty Liver Disease—An Evolving View. Clinics in Liver Disease, 22, 11-21. https://doi.org/10.1016/j.cld.2017.08.003 |
[6] | Huang, D.Q., El-Serag, H.B. and Loomba, R. (2020) Global Epidemiology of NAFLD-Related HCC: Trends, Predictions, Risk Factors and Prevention. Nature Reviews Gastroenterology & Hepatology, 18, 223-238. https://doi.org/10.1038/s41575-020-00381-6 |
[7] | Younossi, Z.M., Otgonsuren, M., Henry, L., Venkatesan, C., Mishra, A., Erario, M., et al. (2015) Association of Nonalcoholic Fatty Liver Disease (NAFLD) with Hepatocellular Carcinoma (HCC) in the United States from 2004 to 2009. Hepatology, 62, 1723-1730. https://doi.org/10.1002/hep.28123 |
[8] | Vuppalanchi, R., Noureddin, M., Alkhouri, N. and Sanyal, A.J. (2021) Therapeutic Pipeline in Nonalcoholic Steatohepatitis. Nature Reviews Gastroenterology & Hepatology, 18, 373-392. https://doi.org/10.1038/s41575-020-00408-y |
[9] | Narayanan, S., Surette, F.A. and Hahn, Y.S. (2016) The Immune Landscape in Nonalcoholic Steatohepatitis. Immune Network, 16, 147-158. https://doi.org/10.4110/in.2016.16.3.147 |
[10] | Day, C.P. and James, O.F.W. (1998) Steatohepatitis: A Tale of Two “Hits”? Gastroenterology, 114, 842-845. https://doi.org/10.1016/s0016-5085(98)70599-2 |
[11] | Vonghia, L., Michielsen, P. and Francque, S. (2013) Immunological Mechanisms in the Pathophysiology of Non-Alcoholic Steatohepatitis. International Journal of Molecular Sciences, 14, 19867-19890. https://doi.org/10.3390/ijms141019867 |
[12] | Davies, L.C., Jenkins, S.J., Allen, J.E. and Taylor, P.R. (2013) Tissue-Resident Macrophages. Nature Immunology, 14, 986-995. https://doi.org/10.1038/ni.2705 |
[13] | Viret, C. and Janeway Jr., C.A. (1999) MHC and T Cell Development. Reviews in immunogenetics, 1, 91-104. |
[14] | Rossjohn, J., Gras, S., Miles, J.J., Turner, S.J., Godfrey, D.I. and McCluskey, J. (2015) T Cell Antigen Receptor Recognition of Antigen-Presenting Molecules. Annual Review of Immunology, 33, 169-200. https://doi.org/10.1146/annurev-immunol-032414-112334 |
[15] | Scaviner, D. and Lefranc, M. (2000) The Human T Cell Receptor Alpha Variable (TRAV) Genes. Experimental and Clinical Immunogenetics, 17, 83-96. https://doi.org/10.1159/000019128 |
[16] | Bhati, M., Cole, D.K., McCluskey, J., Sewell, A.K. and Rossjohn, J. (2014) The Versatility of the αβ T‐cell Antigen Receptor. Protein Science, 23, 260-272. https://doi.org/10.1002/pro.2412 |
[17] | Hayday, A.C. (2000) γδ Cells: A Right Time and a Right Place for a Conserved Third Way of Protection. Annual Review of Immunology, 18, 975-1026. https://doi.org/10.1146/annurev.immunol.18.1.975 |
[18] | Kenna, T., Golden-Mason, L., Norris, S., Hegarty, J.E., O’Farrelly, C. and Doherty, D.G. (2004) Distinct Subpopulations of γδ T Cells Are Present in Normal and Tumor-Bearing Human Liver. Clinical Immunology, 113, 56-63. https://doi.org/10.1016/j.clim.2004.05.003 |
[19] | Gao, B., Jeong, W. and Tian, Z. (2008) Liver: An Organ with Predominant Innate Immunity. Hepatology, 47, 729-736. https://doi.org/10.1002/hep.22034 |
[20] | Torres‐Hernandez, A., Wang, W., Nikiforov, Y., Tejada, K., Torres, L., Kalabin, A., et al. (2019) γδ T Cells Promote Steatohepatitis by Orchestrating Innate and Adaptive Immune Programming. Hepatology, 71, 477-494. https://doi.org/10.1002/hep.30952 |
[21] | Castaño-Rodríguez, N., Mitchell, H.M. and Kaakoush, N.O. (2017) NAFLD, Helicobacter Species and the Intestinal Microbiome. Best Practice & Research Clinical Gastroenterology, 31, 657-668. https://doi.org/10.1016/j.bpg.2017.09.008 |
[22] | Ribeiro, S.T., Ribot, J.C. and Silva-Santos, B. (2015) Five Layers of Receptor Signaling in γδ T-Cell Differentiation and Activation. Frontiers in Immunology, 6, Article 15. https://doi.org/10.3389/fimmu.2015.00015 |
[23] | Lombes, A., Durand, A., Charvet, C., Rivière, M., Bonilla, N., Auffray, C., et al. (2015) Adaptive Immune-Like γ/δ T Lymphocytes Share Many Common Features with Their α/β T Cell Counterparts. The Journal of Immunology, 195, 1449-1458. https://doi.org/10.4049/jimmunol.1500375 |
[24] | Her, Z., Tan, J.H.L., Lim, Y., Tan, S.Y., Chan, X.Y., Tan, W.W.S., et al. (2020) CD4+ T Cells Mediate the Development of Liver Fibrosis in High Fat Diet-Induced NAFLD in Humanized Mice. Frontiers in Immunology, 11, Article 580968. https://doi.org/10.3389/fimmu.2020.580968 |
[25] | Li, C., Du, X., Shen, Z., Wei, Y., Wang, Y., Han, X., et al. (2022) The Critical and Diverse Roles of CD4–CD8– Double Negative T Cells in Nonalcoholic Fatty Liver Disease. Cellular and Molecular Gastroenterology and Hepatology, 13, 1805-1827. https://doi.org/10.1016/j.jcmgh.2022.02.019 |
[26] | Li, F., Hao, X., Chen, Y., Bai, L., Gao, X., Lian, Z., et al. (2017) The Microbiota Maintain Homeostasis of Liver-Resident γδT-17 Cells in a Lipid Antigen/CD1D-Dependent Manner. Nature Communications, 8, Article No. 13839. https://doi.org/10.1038/ncomms13839 |
[27] | Han, Y., Ling, Q., Wu, L., Wang, X., Wang, Z., Chen, J., et al. (2023) Akkermansia muciniphila Inhibits Nonalcoholic Steatohepatitis by Orchestrating TLR2-Activated γδt17 Cell and Macrophage Polarization. Gut Microbes, 15, Article ID: 2221485. https://doi.org/10.1080/19490976.2023.2221485 |
[28] | Dutton, R.W., Bradley, L.M. and Swain, S.L. (1998) T CELL Memory. Annual Review of Immunology, 16, 201-223. https://doi.org/10.1146/annurev.immunol.16.1.201 |
[29] | Raphael, I., Nalawade, S., Eagar, T.N. and Forsthuber, T.G. (2015) T Cell Subsets and Their Signature Cytokines in Autoimmune and Inflammatory Diseases. Cytokine, 74, 5-17. https://doi.org/10.1016/j.cyto.2014.09.011 |
[30] | Shinkai, K., Mohrs, M. and Locksley, R.M. (2002) Helper T Cells Regulate Type-2 Innate Immunity in Vivo. Nature, 420, 825-829. https://doi.org/10.1038/nature01202 |
[31] | Ouyang, W., Kolls, J.K. and Zheng, Y. (2008) The Biological Functions of T Helper 17 Cell Effector Cytokines in Inflammation. Immunity, 28, 454-467. https://doi.org/10.1016/j.immuni.2008.03.004 |
[32] | Ma, C., Kesarwala, A.H., Eggert, T., Medina-Echeverz, J., Kleiner, D.E., Jin, P., et al. (2016) NAFLD Causes Selective CD4+ T Lymphocyte Loss and Promotes Hepatocarcinogenesis. Nature, 531, 253-257. https://doi.org/10.1038/nature16969 |
[33] | Grover, P., Goel, P.N. and Greene, M.I. (2021) Regulatory T Cells: Regulation of Identity and Function. Frontiers in Immunology, 12, Article 750542. https://doi.org/10.3389/fimmu.2021.750542 |
[34] | Arce-Sillas, A., Álvarez-Luquín, D.D., Tamaya-Domínguez, B., Gomez-Fuentes, S., Trejo-García, A., Melo-Salas, M., et al. (2016) Regulatory T Cells: Molecular Actions on Effector Cells in Immune Regulation. Journal of Immunology Research, 2016, Article ID: 1720827. https://doi.org/10.1155/2016/1720827 |
[35] | Ma, X., Hua, J., Mohamood, A.R., Hamad, A.R.A., Ravi, R. and Li, Z. (2007) A High-Fat Diet and Regulatory T Cells Influence Susceptibility to Endotoxin-Induced Liver Injury. Hepatology, 46, 1519-1529. https://doi.org/10.1002/hep.21823 |
[36] | He, B., Wu, L., Xie, W., Shao, Y., Jiang, J., Zhao, Z., et al. (2017) The Imbalance of Th17/Treg Cells Is Involved in the Progression of Nonalcoholic Fatty Liver Disease in Mice. BMC Immunology, 18, Article No. 33. https://doi.org/10.1186/s12865-017-0215-y |
[37] | Roh, Y.S., Kim, J.W., Park, S., Shon, C., Kim, S., Eo, S.K., et al. (2018) Toll-like Receptor-7 Signaling Promotes Nonalcoholic Steatohepatitis by Inhibiting Regulatory T Cells in Mice. The American Journal of Pathology, 188, 2574-2588. https://doi.org/10.1016/j.ajpath.2018.07.011 |
[38] | Ilan, Y., Maron, R., Tukpah, A., Maioli, T.U., Murugaiyan, G., Yang, K., et al. (2010) Induction of Regulatory T Cells Decreases Adipose Inflammation and Alleviates Insulin Resistance in Ob/Ob Mice. Proceedings of the National Academy of Sciences of the United States of America, 107, 9765-9770. https://doi.org/10.1073/pnas.0908771107 |
[39] | Rau, M., Schilling, A., Meertens, J., Hering, I., Weiss, J., Jurowich, C., et al. (2016) Progression from Nonalcoholic Fatty Liver to Nonalcoholic Steatohepatitis Is Marked by a Higher Frequency of Th17 Cells in the Liver and an Increased Th17/resting Regulatory T Cell Ratio in Peripheral Blood and in the Liver. The Journal of Immunology, 196, 97-105. https://doi.org/10.4049/jimmunol.1501175 |
[40] | Zhang, C., Li, L., Feng, K., Fan, D., Xue, W. and Lu, J. (2017) ‘Repair’ Treg Cells in Tissue Injury. Cellular Physiology and Biochemistry, 43, 2155-2169. https://doi.org/10.1159/000484295 |
[41] | Dywicki, J., Buitrago‐Molina, L.E., Noyan, F., Davalos‐Misslitz, A.C., Hupa‐Breier, K.L., Lieber, M., et al. (2021) The Detrimental Role of Regulatory T Cells in Nonalcoholic Steatohepatitis. Hepatology Communications, 6, 320-333. https://doi.org/10.1002/hep4.1807 |
[42] | Fabregat, I., Moreno‐Càceres, J., Sánchez, A., Dooley, S., Dewidar, B., Giannelli, G., et al. (2016) TGF‐β Signalling and Liver Disease. The FEBS Journal, 283, 2219-2232. https://doi.org/10.1111/febs.13665 |
[43] | Wang, X., Li, W., Fu, J., Ni, Y. and Liu, K. (2022) Correlation between T-Lymphocyte Subsets, Regulatory T Cells, and Hepatic Fibrosis in Patients with Nonalcoholic Fatty Liver. Evidence-Based Complementary and Alternative Medicine, 2022, Article ID: 6250751. https://doi.org/10.1155/2022/6250751 |
[44] | Koh, C., Lee, S., Kwak, M., Kim, B. and Chung, Y. (2023) CD8 T-Cell Subsets: Heterogeneity, Functions, and Therapeutic Potential. Experimental & Molecular Medicine, 55, 2287-2299. https://doi.org/10.1038/s12276-023-01105-x |
[45] | Zhong, X., Lv, M., Ma, M., Huang, Q., Hu, R., Li, J., et al. (2023) State of CD8+ T Cells in Progression from Nonalcoholic Steatohepatitis to Hepatocellular Carcinoma: From Pathogenesis to Immunotherapy. Biomedicine & Pharmacotherapy, 165, Article ID: 115131. https://doi.org/10.1016/j.biopha.2023.115131 |
[46] | Fu, J., Xu, D., Liu, Z., Shi, M., Zhao, P., Fu, B., et al. (2007) Increased Regulatory T Cells Correlate with CD8 T-Cell Impairment and Poor Survival in Hepatocellular Carcinoma Patients. Gastroenterology, 132, 2328-2339. https://doi.org/10.1053/j.gastro.2007.03.102 |
[47] | Wang, T., Sun, G., Wang, Y., Li, S., Zhao, X., Zhang, C., et al. (2019) The Immunoregulatory Effects of CD8 T‐Cell-Derived Perforin on Diet‐induced Nonalcoholic Steatohepatitis. The FASEB Journal, 33, 8490-8503. https://doi.org/10.1096/fj.201802534rr |
[48] | Dudek, M., Pfister, D., Donakonda, S., Filpe, P., Schneider, A., Laschinger, M., et al. (2021) Auto-Aggressive CXCR6+ CD8 T Cells Cause Liver Immune Pathology in Nash. Nature, 592, 444-449. https://doi.org/10.1038/s41586-021-03233-8 |
[49] | Winau, F., Hegasy, G., Weiskirchen, R., Weber, S., Cassan, C., Sieling, P.A., et al. (2007) Ito Cells Are Liver-Resident Antigen-Presenting Cells for Activating T Cell Responses. Immunity, 26, 117-129. https://doi.org/10.1016/j.immuni.2006.11.011 |
[50] | Kremer, M. and Hines, I.N. (2008) Natural Killer T Cells and Non-Alcoholic Fatty Liver Disease: Fat Chews on the Immune System. World Journal of Gastroenterology, 14, 487-488. https://doi.org/10.3748/wjg.14.487 |
[51] | Maricic, I., Marrero, I., Eguchi, A., Nakamura, R., Johnson, C.D., Dasgupta, S., et al. (2018) Differential Activation of Hepatic Invariant NKT Cell Subsets Plays a Key Role in Progression of Nonalcoholic Steatohepatitis. The Journal of Immunology, 201, 3017-3035. https://doi.org/10.4049/jimmunol.1800614 |
[52] | Bhattacharjee, J., Kirby, M., Softic, S., Miles, L., Salazar‐Gonzalez, R., Shivakumar, P., et al. (2017) Hepatic Natural Killer T‐Cell and CD8+ T‐Cell Signatures in Mice with Nonalcoholic Steatohepatitis. Hepatology Communications, 1, 299-310. https://doi.org/10.1002/hep4.1041 |
[53] | Dasgupta, S. and Kumar, V. (2016) Type II NKT Cells: A Distinct CD1d-Restricted Immune Regulatory NKT Cell Subset. Immunogenetics, 68, 665-676. https://doi.org/10.1007/s00251-016-0930-1 |
[54] | Billerbeck, E., Kang, Y., Walker, L., Lockstone, H., Grafmueller, S., Fleming, V., et al. (2010) Analysis of CD161 Expression on Human CD8+ T Cells Defines a Distinct Functional Subset with Tissue-Homing Properties. Proceedings of the National Academy of Sciences of the United States of America, 107, 3006-3011. https://doi.org/10.1073/pnas.0914839107 |
[55] | Leeansyah, E., Loh, L., Nixon, D.F. and Sandberg, J.K. (2014) Acquisition of Innate-Like Microbial Reactivity in Mucosal Tissues during Human Fetal Mait-Cell Development. Nature Communications, 5, Article No. 3143. https://doi.org/10.1038/ncomms4143 |
[56] | Bolte, F. and Rehermann, B. (2018) Mucosal-Associated Invariant T Cells in Chronic Inflammatory Liver Disease. Seminars in Liver Disease, 38, 60-65. https://doi.org/10.1055/s-0037-1621709 |
[57] | Li, Y., Huang, B., Jiang, X., Chen, W., Zhang, J., Wei, Y., et al. (2018) Mucosal-Associated Invariant T Cells Improve Nonalcoholic Fatty Liver Disease through Regulating Macrophage Polarization. Frontiers in Immunology, 9, Article 1994. https://doi.org/10.3389/fimmu.2018.01994 |
[58] | Hegde, P., Weiss, E., Paradis, V., Wan, J., Mabire, M., Sukriti, S., et al. (2018) Mucosal-Associated Invariant T Cells Are a Profibrogenic Immune Cell Population in the Liver. Nature Communications, 9, Article No. 2146. https://doi.org/10.1038/s41467-018-04450-y |
[59] | Harrison, S.A., Bedossa, P., Guy, C.D., Schattenberg, J.M., Loomba, R., Taub, R., et al. (2024) A Phase 3, Randomized, Controlled Trial of Resmetirom in NASH with Liver Fibrosis. New England Journal of Medicine, 390, 497-509. https://doi.org/10.1056/nejmoa2309000 |
[60] | Kruger, A.J., Fuchs, B.C., Masia, R., Holmes, J.A., Salloum, S., Sojoodi, M., et al. (2018) Prolonged Cenicriviroc Therapy Reduces Hepatic Fibrosis Despite Steatohepatitis in a Diet‐induced Mouse Model of Nonalcoholic Steatohepatitis. Hepatology Communications, 2, 529-545. https://doi.org/10.1002/hep4.1160 |
[61] | Lefebvre, E., Moyle, G., Reshef, R., Richman, L.P., Thompson, M., Hong, F., et al. (2016) Antifibrotic Effects of the Dual CCR2/CCR5 Antagonist Cenicriviroc in Animal Models of Liver and Kidney Fibrosis. PLOS ONE, 11, e0158156. https://doi.org/10.1371/journal.pone.0158156 |
[62] | Fantuzzi, L., Tagliamonte, M., Gauzzi, M.C. and Lopalco, L. (2019) Dual CCR5/CCR2 Targeting: Opportunities for the Cure of Complex Disorders. Cellular and Molecular Life Sciences, 76, 4869-4886. https://doi.org/10.1007/s00018-019-03255-6 |
[63] | Huby, T. and Gautier, E.L. (2021) Immune Cell-Mediated Features of Non-Alcoholic Steatohepatitis. Nature Reviews Immunology, 22, 429-443. https://doi.org/10.1038/s41577-021-00639-3 |
[64] | Chew, V., Chen, J., Lee, D., Loh, E., Lee, J., Lim, K.H., et al. (2011) Chemokine-Driven Lymphocyte Infiltration: An Early Intratumoural Event Determining Long-Term Survival in Resectable Hepatocellular Carcinoma. Gut, 61, 427-438. https://doi.org/10.1136/gutjnl-2011-300509 |
[65] | Marabelle, A., Kohrt, H., Caux, C. and Levy, R. (2014) Intratumoral Immunization: A New Paradigm for Cancer Therapy. Clinical Cancer Research, 20, 1747-1756. https://doi.org/10.1158/1078-0432.ccr-13-2116 |
[66] | Yao, W., Ba, Q., Li, X., Li, H., Zhang, S., Yuan, Y., et al. (2017) A Natural CCR2 Antagonist Relieves Tumor-Associated Macrophage-Mediated Immunosuppression to Produce a Therapeutic Effect for Liver Cancer. EBioMedicine, 22, 58-67. https://doi.org/10.1016/j.ebiom.2017.07.014 |
[67] | Rai, R.P., Liu, Y., Iyer, S.S., Liu, S., Gupta, B., Desai, C., et al. (2020) Blocking Integrin α4β7-Mediated CD4 T Cell Recruitment to the Intestine and Liver Protects Mice from Western Diet-Induced Non-Alcoholic Steatohepatitis. Journal of Hepatology, 73, 1013-1022. https://doi.org/10.1016/j.jhep.2020.05.047 |
[68] | Hirsova, P., Bamidele, A.O., Wang, H., Povero, D. and Revelo, X.S. (2021) Emerging Roles of T Cells in the Pathogenesis of Nonalcoholic Steatohepatitis and Hepatocellular Carcinoma. Frontiers in Endocrinology, 12, Article 760860. https://doi.org/10.3389/fendo.2021.760860 |
[69] | Wen, W., Wu, P., Zhang, Y., Chen, Z., Sun, J. and Chen, H. (2021) Comprehensive Analysis of NAFLD and the Therapeutic Target Identified. Frontiers in Cell and Developmental Biology, 9, Article 704704. https://doi.org/10.3389/fcell.2021.704704 |
[70] | Xu, Z., Zhang, X., Lau, J. and Yu, J. (2016) C-X-C Motif Chemokine 10 in Non-Alcoholic Steatohepatitis: Role as a Pro-Inflammatory Factor and Clinical Implication. Expert Reviews in Molecular Medicine, 18, e16. https://doi.org/10.1017/erm.2016.16 |
[71] | de Fraia Pinto, L., Compri, C.M., Fornari, J.V., Bartchewsky, W., Cintra, D.E., Trevisan, M., et al. (2010) The Immunosuppressant Drug, Thalidomide, Improves Hepatic Alterations Induced by a High-Fat Diet in Mice. Liver International, 30, 603-610. https://doi.org/10.1111/j.1478-3231.2009.02200.x |
[72] | Li, Z., Yang, S., Lin, H., Huang, J., Watkins, P.A., Moser, A.B., et al. (2003) Probiotics and Antibodies to TNF Inhibit Inflammatory Activity and Improve Nonalcoholic Fatty Liver Disease. Hepatology, 37, 343-350. https://doi.org/10.1053/jhep.2003.50048 |