全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

T淋巴细胞亚群在NAFLD发病机制中的作用
The Roles of T Lymphocyte Subsets in the Pathogenesis of NAFLD

DOI: 10.12677/acm.2025.151105, PP. 777-786

Keywords: 非酒精性脂肪性肝病(NAFLD),非酒精性脂肪性肝炎(NASH),肝细胞癌(HCC),CD4+T细胞,CD8+T细胞;γδT细胞
Non-Alcoholic Fatty Liver Disease (NAFLD)
, Non-Alcoholic Steatohepatitis (NASH), Hepatocellular Carcinoma (HCC), CD4+T Cells, CD8+T Cells, γδT Cells

Full-Text   Cite this paper   Add to My Lib

Abstract:

非酒精性脂肪性肝病(Non-alcoholic fatty liver disease, NAFLD)包括一系列的肝脏表现,从肝脏脂肪变性开始,可能演变为非酒精性脂肪性肝炎(Non-alcoholic steatohepatitis, NASH)、纤维化、肝硬化甚至肝细胞癌(Hepatocellular carcinoma, HCC)。其发病率在全球范围内呈上升趋势。尽管NAFLD是一种与代谢紊乱相关的疾病,但它也涉及多种免疫细胞介导的炎症过程。多种免疫细胞通过分泌促炎或抗炎因子来促进或抑制肝细胞炎症,从而影响NAFLD进程。T细胞作为适应性免疫中重要的一环,包括多种淋巴细胞亚群,在NAFLD的进展中发挥着关键作用。本文综述了T淋巴细胞亚群在NAFLD发病机制中的作用,以期为非酒精性脂肪性肝病的药物干预提供新策略。
Non-alcoholic fatty liver disease (NAFLD) encompasses a series of liver manifestations. Starting from hepatic steatosis, it may progress to non-alcoholic steatohepatitis (NASH), fibrosis, liver cirrhosis and even hepatocellular carcinoma (HCC). The incidence of NAFLD is on the rise globally. Although NAFLD is a disease concerning metabolic disorders, it also involves various inflammatory processes mediated by immune cells. Various immune cells promote or inhibit liver cell inflammation by secreting pro-inflammatory or anti-inflammatory factors to influence the progression of non-alcoholic fatty liver disease (NAFLD). T cells, as an important part of adaptive immunity, include multiple lymphocyte subsets and play a crucial role in the progression of NAFLD. We review the roles of T lymphocyte subsets in the pathogenesis of NAFLD, expecting to provide new strategies for the pharmaceutical intervention of non-alcoholic fatty liver disease.

References

[1]  Lazarus, J.V., Mark, H.E., Villota-Rivas, M., Palayew, A., Carrieri, P., Colombo, M., et al. (2022) The Global NAFLD Policy Review and Preparedness Index: Are Countries Ready to Address This Silent Public Health Challenge? Journal of Hepatology, 76, 771-780.
https://doi.org/10.1016/j.jhep.2021.10.025
[2]  Powell, E.E., Wong, V.W. and Rinella, M. (2021) Non-Alcoholic Fatty Liver Disease. The Lancet, 397, 2212-2224.
https://doi.org/10.1016/s0140-6736(20)32511-3
[3]  White, L., Fishman, P., Basu, A., Crane, P.K., Larson, E.B. and Coe, N.B. (2019) Medicare Expenditures Attributable to Dementia. Health Services Research, 54, 773-781.
https://doi.org/10.1111/1475-6773.13134
[4]  Eslam, M., Newsome, P.N., Sarin, S.K., Anstee, Q.M., Targher, G., Romero-Gomez, M., et al. (2020) A New Definition for Metabolic Dysfunction-Associated Fatty Liver Disease: An International Expert Consensus Statement. Journal of Hepatology, 73, 202-209.
https://doi.org/10.1016/j.jhep.2020.03.039
[5]  Lindenmeyer, C.C. and McCullough, A.J. (2018) The Natural History of Nonalcoholic Fatty Liver Disease—An Evolving View. Clinics in Liver Disease, 22, 11-21.
https://doi.org/10.1016/j.cld.2017.08.003
[6]  Huang, D.Q., El-Serag, H.B. and Loomba, R. (2020) Global Epidemiology of NAFLD-Related HCC: Trends, Predictions, Risk Factors and Prevention. Nature Reviews Gastroenterology & Hepatology, 18, 223-238.
https://doi.org/10.1038/s41575-020-00381-6
[7]  Younossi, Z.M., Otgonsuren, M., Henry, L., Venkatesan, C., Mishra, A., Erario, M., et al. (2015) Association of Nonalcoholic Fatty Liver Disease (NAFLD) with Hepatocellular Carcinoma (HCC) in the United States from 2004 to 2009. Hepatology, 62, 1723-1730.
https://doi.org/10.1002/hep.28123
[8]  Vuppalanchi, R., Noureddin, M., Alkhouri, N. and Sanyal, A.J. (2021) Therapeutic Pipeline in Nonalcoholic Steatohepatitis. Nature Reviews Gastroenterology & Hepatology, 18, 373-392.
https://doi.org/10.1038/s41575-020-00408-y
[9]  Narayanan, S., Surette, F.A. and Hahn, Y.S. (2016) The Immune Landscape in Nonalcoholic Steatohepatitis. Immune Network, 16, 147-158.
https://doi.org/10.4110/in.2016.16.3.147
[10]  Day, C.P. and James, O.F.W. (1998) Steatohepatitis: A Tale of Two “Hits”? Gastroenterology, 114, 842-845.
https://doi.org/10.1016/s0016-5085(98)70599-2
[11]  Vonghia, L., Michielsen, P. and Francque, S. (2013) Immunological Mechanisms in the Pathophysiology of Non-Alcoholic Steatohepatitis. International Journal of Molecular Sciences, 14, 19867-19890.
https://doi.org/10.3390/ijms141019867
[12]  Davies, L.C., Jenkins, S.J., Allen, J.E. and Taylor, P.R. (2013) Tissue-Resident Macrophages. Nature Immunology, 14, 986-995.
https://doi.org/10.1038/ni.2705
[13]  Viret, C. and Janeway Jr., C.A. (1999) MHC and T Cell Development. Reviews in immunogenetics, 1, 91-104.
[14]  Rossjohn, J., Gras, S., Miles, J.J., Turner, S.J., Godfrey, D.I. and McCluskey, J. (2015) T Cell Antigen Receptor Recognition of Antigen-Presenting Molecules. Annual Review of Immunology, 33, 169-200.
https://doi.org/10.1146/annurev-immunol-032414-112334
[15]  Scaviner, D. and Lefranc, M. (2000) The Human T Cell Receptor Alpha Variable (TRAV) Genes. Experimental and Clinical Immunogenetics, 17, 83-96.
https://doi.org/10.1159/000019128
[16]  Bhati, M., Cole, D.K., McCluskey, J., Sewell, A.K. and Rossjohn, J. (2014) The Versatility of the αβ T‐cell Antigen Receptor. Protein Science, 23, 260-272.
https://doi.org/10.1002/pro.2412
[17]  Hayday, A.C. (2000) γδ Cells: A Right Time and a Right Place for a Conserved Third Way of Protection. Annual Review of Immunology, 18, 975-1026.
https://doi.org/10.1146/annurev.immunol.18.1.975
[18]  Kenna, T., Golden-Mason, L., Norris, S., Hegarty, J.E., O’Farrelly, C. and Doherty, D.G. (2004) Distinct Subpopulations of γδ T Cells Are Present in Normal and Tumor-Bearing Human Liver. Clinical Immunology, 113, 56-63.
https://doi.org/10.1016/j.clim.2004.05.003
[19]  Gao, B., Jeong, W. and Tian, Z. (2008) Liver: An Organ with Predominant Innate Immunity. Hepatology, 47, 729-736.
https://doi.org/10.1002/hep.22034
[20]  Torres‐Hernandez, A., Wang, W., Nikiforov, Y., Tejada, K., Torres, L., Kalabin, A., et al. (2019) γδ T Cells Promote Steatohepatitis by Orchestrating Innate and Adaptive Immune Programming. Hepatology, 71, 477-494.
https://doi.org/10.1002/hep.30952
[21]  Castaño-Rodríguez, N., Mitchell, H.M. and Kaakoush, N.O. (2017) NAFLD, Helicobacter Species and the Intestinal Microbiome. Best Practice & Research Clinical Gastroenterology, 31, 657-668.
https://doi.org/10.1016/j.bpg.2017.09.008
[22]  Ribeiro, S.T., Ribot, J.C. and Silva-Santos, B. (2015) Five Layers of Receptor Signaling in γδ T-Cell Differentiation and Activation. Frontiers in Immunology, 6, Article 15.
https://doi.org/10.3389/fimmu.2015.00015
[23]  Lombes, A., Durand, A., Charvet, C., Rivière, M., Bonilla, N., Auffray, C., et al. (2015) Adaptive Immune-Like γ/δ T Lymphocytes Share Many Common Features with Their α/β T Cell Counterparts. The Journal of Immunology, 195, 1449-1458.
https://doi.org/10.4049/jimmunol.1500375
[24]  Her, Z., Tan, J.H.L., Lim, Y., Tan, S.Y., Chan, X.Y., Tan, W.W.S., et al. (2020) CD4+ T Cells Mediate the Development of Liver Fibrosis in High Fat Diet-Induced NAFLD in Humanized Mice. Frontiers in Immunology, 11, Article 580968.
https://doi.org/10.3389/fimmu.2020.580968
[25]  Li, C., Du, X., Shen, Z., Wei, Y., Wang, Y., Han, X., et al. (2022) The Critical and Diverse Roles of CD4CD8 Double Negative T Cells in Nonalcoholic Fatty Liver Disease. Cellular and Molecular Gastroenterology and Hepatology, 13, 1805-1827.
https://doi.org/10.1016/j.jcmgh.2022.02.019
[26]  Li, F., Hao, X., Chen, Y., Bai, L., Gao, X., Lian, Z., et al. (2017) The Microbiota Maintain Homeostasis of Liver-Resident γδT-17 Cells in a Lipid Antigen/CD1D-Dependent Manner. Nature Communications, 8, Article No. 13839.
https://doi.org/10.1038/ncomms13839
[27]  Han, Y., Ling, Q., Wu, L., Wang, X., Wang, Z., Chen, J., et al. (2023) Akkermansia muciniphila Inhibits Nonalcoholic Steatohepatitis by Orchestrating TLR2-Activated γδt17 Cell and Macrophage Polarization. Gut Microbes, 15, Article ID: 2221485.
https://doi.org/10.1080/19490976.2023.2221485
[28]  Dutton, R.W., Bradley, L.M. and Swain, S.L. (1998) T CELL Memory. Annual Review of Immunology, 16, 201-223.
https://doi.org/10.1146/annurev.immunol.16.1.201
[29]  Raphael, I., Nalawade, S., Eagar, T.N. and Forsthuber, T.G. (2015) T Cell Subsets and Their Signature Cytokines in Autoimmune and Inflammatory Diseases. Cytokine, 74, 5-17.
https://doi.org/10.1016/j.cyto.2014.09.011
[30]  Shinkai, K., Mohrs, M. and Locksley, R.M. (2002) Helper T Cells Regulate Type-2 Innate Immunity in Vivo. Nature, 420, 825-829.
https://doi.org/10.1038/nature01202
[31]  Ouyang, W., Kolls, J.K. and Zheng, Y. (2008) The Biological Functions of T Helper 17 Cell Effector Cytokines in Inflammation. Immunity, 28, 454-467.
https://doi.org/10.1016/j.immuni.2008.03.004
[32]  Ma, C., Kesarwala, A.H., Eggert, T., Medina-Echeverz, J., Kleiner, D.E., Jin, P., et al. (2016) NAFLD Causes Selective CD4+ T Lymphocyte Loss and Promotes Hepatocarcinogenesis. Nature, 531, 253-257.
https://doi.org/10.1038/nature16969
[33]  Grover, P., Goel, P.N. and Greene, M.I. (2021) Regulatory T Cells: Regulation of Identity and Function. Frontiers in Immunology, 12, Article 750542.
https://doi.org/10.3389/fimmu.2021.750542
[34]  Arce-Sillas, A., Álvarez-Luquín, D.D., Tamaya-Domínguez, B., Gomez-Fuentes, S., Trejo-García, A., Melo-Salas, M., et al. (2016) Regulatory T Cells: Molecular Actions on Effector Cells in Immune Regulation. Journal of Immunology Research, 2016, Article ID: 1720827.
https://doi.org/10.1155/2016/1720827
[35]  Ma, X., Hua, J., Mohamood, A.R., Hamad, A.R.A., Ravi, R. and Li, Z. (2007) A High-Fat Diet and Regulatory T Cells Influence Susceptibility to Endotoxin-Induced Liver Injury. Hepatology, 46, 1519-1529.
https://doi.org/10.1002/hep.21823
[36]  He, B., Wu, L., Xie, W., Shao, Y., Jiang, J., Zhao, Z., et al. (2017) The Imbalance of Th17/Treg Cells Is Involved in the Progression of Nonalcoholic Fatty Liver Disease in Mice. BMC Immunology, 18, Article No. 33.
https://doi.org/10.1186/s12865-017-0215-y
[37]  Roh, Y.S., Kim, J.W., Park, S., Shon, C., Kim, S., Eo, S.K., et al. (2018) Toll-like Receptor-7 Signaling Promotes Nonalcoholic Steatohepatitis by Inhibiting Regulatory T Cells in Mice. The American Journal of Pathology, 188, 2574-2588.
https://doi.org/10.1016/j.ajpath.2018.07.011
[38]  Ilan, Y., Maron, R., Tukpah, A., Maioli, T.U., Murugaiyan, G., Yang, K., et al. (2010) Induction of Regulatory T Cells Decreases Adipose Inflammation and Alleviates Insulin Resistance in Ob/Ob Mice. Proceedings of the National Academy of Sciences of the United States of America, 107, 9765-9770.
https://doi.org/10.1073/pnas.0908771107
[39]  Rau, M., Schilling, A., Meertens, J., Hering, I., Weiss, J., Jurowich, C., et al. (2016) Progression from Nonalcoholic Fatty Liver to Nonalcoholic Steatohepatitis Is Marked by a Higher Frequency of Th17 Cells in the Liver and an Increased Th17/resting Regulatory T Cell Ratio in Peripheral Blood and in the Liver. The Journal of Immunology, 196, 97-105.
https://doi.org/10.4049/jimmunol.1501175
[40]  Zhang, C., Li, L., Feng, K., Fan, D., Xue, W. and Lu, J. (2017) ‘Repair’ Treg Cells in Tissue Injury. Cellular Physiology and Biochemistry, 43, 2155-2169.
https://doi.org/10.1159/000484295
[41]  Dywicki, J., Buitrago‐Molina, L.E., Noyan, F., Davalos‐Misslitz, A.C., Hupa‐Breier, K.L., Lieber, M., et al. (2021) The Detrimental Role of Regulatory T Cells in Nonalcoholic Steatohepatitis. Hepatology Communications, 6, 320-333.
https://doi.org/10.1002/hep4.1807
[42]  Fabregat, I., Moreno‐Càceres, J., Sánchez, A., Dooley, S., Dewidar, B., Giannelli, G., et al. (2016) TGF‐β Signalling and Liver Disease. The FEBS Journal, 283, 2219-2232.
https://doi.org/10.1111/febs.13665
[43]  Wang, X., Li, W., Fu, J., Ni, Y. and Liu, K. (2022) Correlation between T-Lymphocyte Subsets, Regulatory T Cells, and Hepatic Fibrosis in Patients with Nonalcoholic Fatty Liver. Evidence-Based Complementary and Alternative Medicine, 2022, Article ID: 6250751.
https://doi.org/10.1155/2022/6250751
[44]  Koh, C., Lee, S., Kwak, M., Kim, B. and Chung, Y. (2023) CD8 T-Cell Subsets: Heterogeneity, Functions, and Therapeutic Potential. Experimental & Molecular Medicine, 55, 2287-2299.
https://doi.org/10.1038/s12276-023-01105-x
[45]  Zhong, X., Lv, M., Ma, M., Huang, Q., Hu, R., Li, J., et al. (2023) State of CD8+ T Cells in Progression from Nonalcoholic Steatohepatitis to Hepatocellular Carcinoma: From Pathogenesis to Immunotherapy. Biomedicine & Pharmacotherapy, 165, Article ID: 115131.
https://doi.org/10.1016/j.biopha.2023.115131
[46]  Fu, J., Xu, D., Liu, Z., Shi, M., Zhao, P., Fu, B., et al. (2007) Increased Regulatory T Cells Correlate with CD8 T-Cell Impairment and Poor Survival in Hepatocellular Carcinoma Patients. Gastroenterology, 132, 2328-2339.
https://doi.org/10.1053/j.gastro.2007.03.102
[47]  Wang, T., Sun, G., Wang, Y., Li, S., Zhao, X., Zhang, C., et al. (2019) The Immunoregulatory Effects of CD8 T‐Cell-Derived Perforin on Diet‐induced Nonalcoholic Steatohepatitis. The FASEB Journal, 33, 8490-8503.
https://doi.org/10.1096/fj.201802534rr
[48]  Dudek, M., Pfister, D., Donakonda, S., Filpe, P., Schneider, A., Laschinger, M., et al. (2021) Auto-Aggressive CXCR6+ CD8 T Cells Cause Liver Immune Pathology in Nash. Nature, 592, 444-449.
https://doi.org/10.1038/s41586-021-03233-8
[49]  Winau, F., Hegasy, G., Weiskirchen, R., Weber, S., Cassan, C., Sieling, P.A., et al. (2007) Ito Cells Are Liver-Resident Antigen-Presenting Cells for Activating T Cell Responses. Immunity, 26, 117-129.
https://doi.org/10.1016/j.immuni.2006.11.011
[50]  Kremer, M. and Hines, I.N. (2008) Natural Killer T Cells and Non-Alcoholic Fatty Liver Disease: Fat Chews on the Immune System. World Journal of Gastroenterology, 14, 487-488.
https://doi.org/10.3748/wjg.14.487
[51]  Maricic, I., Marrero, I., Eguchi, A., Nakamura, R., Johnson, C.D., Dasgupta, S., et al. (2018) Differential Activation of Hepatic Invariant NKT Cell Subsets Plays a Key Role in Progression of Nonalcoholic Steatohepatitis. The Journal of Immunology, 201, 3017-3035.
https://doi.org/10.4049/jimmunol.1800614
[52]  Bhattacharjee, J., Kirby, M., Softic, S., Miles, L., Salazar‐Gonzalez, R., Shivakumar, P., et al. (2017) Hepatic Natural Killer T‐Cell and CD8+ T‐Cell Signatures in Mice with Nonalcoholic Steatohepatitis. Hepatology Communications, 1, 299-310.
https://doi.org/10.1002/hep4.1041
[53]  Dasgupta, S. and Kumar, V. (2016) Type II NKT Cells: A Distinct CD1d-Restricted Immune Regulatory NKT Cell Subset. Immunogenetics, 68, 665-676.
https://doi.org/10.1007/s00251-016-0930-1
[54]  Billerbeck, E., Kang, Y., Walker, L., Lockstone, H., Grafmueller, S., Fleming, V., et al. (2010) Analysis of CD161 Expression on Human CD8+ T Cells Defines a Distinct Functional Subset with Tissue-Homing Properties. Proceedings of the National Academy of Sciences of the United States of America, 107, 3006-3011.
https://doi.org/10.1073/pnas.0914839107
[55]  Leeansyah, E., Loh, L., Nixon, D.F. and Sandberg, J.K. (2014) Acquisition of Innate-Like Microbial Reactivity in Mucosal Tissues during Human Fetal Mait-Cell Development. Nature Communications, 5, Article No. 3143.
https://doi.org/10.1038/ncomms4143
[56]  Bolte, F. and Rehermann, B. (2018) Mucosal-Associated Invariant T Cells in Chronic Inflammatory Liver Disease. Seminars in Liver Disease, 38, 60-65.
https://doi.org/10.1055/s-0037-1621709
[57]  Li, Y., Huang, B., Jiang, X., Chen, W., Zhang, J., Wei, Y., et al. (2018) Mucosal-Associated Invariant T Cells Improve Nonalcoholic Fatty Liver Disease through Regulating Macrophage Polarization. Frontiers in Immunology, 9, Article 1994.
https://doi.org/10.3389/fimmu.2018.01994
[58]  Hegde, P., Weiss, E., Paradis, V., Wan, J., Mabire, M., Sukriti, S., et al. (2018) Mucosal-Associated Invariant T Cells Are a Profibrogenic Immune Cell Population in the Liver. Nature Communications, 9, Article No. 2146.
https://doi.org/10.1038/s41467-018-04450-y
[59]  Harrison, S.A., Bedossa, P., Guy, C.D., Schattenberg, J.M., Loomba, R., Taub, R., et al. (2024) A Phase 3, Randomized, Controlled Trial of Resmetirom in NASH with Liver Fibrosis. New England Journal of Medicine, 390, 497-509.
https://doi.org/10.1056/nejmoa2309000
[60]  Kruger, A.J., Fuchs, B.C., Masia, R., Holmes, J.A., Salloum, S., Sojoodi, M., et al. (2018) Prolonged Cenicriviroc Therapy Reduces Hepatic Fibrosis Despite Steatohepatitis in a Diet‐induced Mouse Model of Nonalcoholic Steatohepatitis. Hepatology Communications, 2, 529-545.
https://doi.org/10.1002/hep4.1160
[61]  Lefebvre, E., Moyle, G., Reshef, R., Richman, L.P., Thompson, M., Hong, F., et al. (2016) Antifibrotic Effects of the Dual CCR2/CCR5 Antagonist Cenicriviroc in Animal Models of Liver and Kidney Fibrosis. PLOS ONE, 11, e0158156.
https://doi.org/10.1371/journal.pone.0158156
[62]  Fantuzzi, L., Tagliamonte, M., Gauzzi, M.C. and Lopalco, L. (2019) Dual CCR5/CCR2 Targeting: Opportunities for the Cure of Complex Disorders. Cellular and Molecular Life Sciences, 76, 4869-4886.
https://doi.org/10.1007/s00018-019-03255-6
[63]  Huby, T. and Gautier, E.L. (2021) Immune Cell-Mediated Features of Non-Alcoholic Steatohepatitis. Nature Reviews Immunology, 22, 429-443.
https://doi.org/10.1038/s41577-021-00639-3
[64]  Chew, V., Chen, J., Lee, D., Loh, E., Lee, J., Lim, K.H., et al. (2011) Chemokine-Driven Lymphocyte Infiltration: An Early Intratumoural Event Determining Long-Term Survival in Resectable Hepatocellular Carcinoma. Gut, 61, 427-438.
https://doi.org/10.1136/gutjnl-2011-300509
[65]  Marabelle, A., Kohrt, H., Caux, C. and Levy, R. (2014) Intratumoral Immunization: A New Paradigm for Cancer Therapy. Clinical Cancer Research, 20, 1747-1756.
https://doi.org/10.1158/1078-0432.ccr-13-2116
[66]  Yao, W., Ba, Q., Li, X., Li, H., Zhang, S., Yuan, Y., et al. (2017) A Natural CCR2 Antagonist Relieves Tumor-Associated Macrophage-Mediated Immunosuppression to Produce a Therapeutic Effect for Liver Cancer. EBioMedicine, 22, 58-67.
https://doi.org/10.1016/j.ebiom.2017.07.014
[67]  Rai, R.P., Liu, Y., Iyer, S.S., Liu, S., Gupta, B., Desai, C., et al. (2020) Blocking Integrin α4β7-Mediated CD4 T Cell Recruitment to the Intestine and Liver Protects Mice from Western Diet-Induced Non-Alcoholic Steatohepatitis. Journal of Hepatology, 73, 1013-1022.
https://doi.org/10.1016/j.jhep.2020.05.047
[68]  Hirsova, P., Bamidele, A.O., Wang, H., Povero, D. and Revelo, X.S. (2021) Emerging Roles of T Cells in the Pathogenesis of Nonalcoholic Steatohepatitis and Hepatocellular Carcinoma. Frontiers in Endocrinology, 12, Article 760860.
https://doi.org/10.3389/fendo.2021.760860
[69]  Wen, W., Wu, P., Zhang, Y., Chen, Z., Sun, J. and Chen, H. (2021) Comprehensive Analysis of NAFLD and the Therapeutic Target Identified. Frontiers in Cell and Developmental Biology, 9, Article 704704.
https://doi.org/10.3389/fcell.2021.704704
[70]  Xu, Z., Zhang, X., Lau, J. and Yu, J. (2016) C-X-C Motif Chemokine 10 in Non-Alcoholic Steatohepatitis: Role as a Pro-Inflammatory Factor and Clinical Implication. Expert Reviews in Molecular Medicine, 18, e16.
https://doi.org/10.1017/erm.2016.16
[71]  de Fraia Pinto, L., Compri, C.M., Fornari, J.V., Bartchewsky, W., Cintra, D.E., Trevisan, M., et al. (2010) The Immunosuppressant Drug, Thalidomide, Improves Hepatic Alterations Induced by a High-Fat Diet in Mice. Liver International, 30, 603-610.
https://doi.org/10.1111/j.1478-3231.2009.02200.x
[72]  Li, Z., Yang, S., Lin, H., Huang, J., Watkins, P.A., Moser, A.B., et al. (2003) Probiotics and Antibodies to TNF Inhibit Inflammatory Activity and Improve Nonalcoholic Fatty Liver Disease. Hepatology, 37, 343-350.
https://doi.org/10.1053/jhep.2003.50048

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133