全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Predictors of Successful Radiofrequency Ablation of Benign Thyroid Nodules: A Single Centre Analysis

DOI: 10.4236/ijcm.2025.161002, PP. 16-28

Keywords: Predictors, Radiofrequency Ablation, Benign, Thyroid Nodules

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objective: To assess the predictors of successful inactivation of benign thyroid nodules using radiofrequency ablation (RFA) and the hormonal responses thereafter. Methods: A retrospective study conducted at Zhongnan Hospital of Wuhan University (January 2022 to January 2024) analysed thyroid tumor characteristics using B-mode ultrasound, colour Doppler imaging, and CEUS post-RFA. Thyroid hormone levels were also assessed before RFA and at 1, 3, and 6 months after the procedure. Results: The study involved 72 patients with benign thyroid nodules, comprising 13 males and 59 females, with a mean age of 45.8 ± 12.1 years. Complete inactivation was achieved in 70.8% of nodules, while 29.2% showed partial inactivation. Nodules with complete inactivation exhibited more calcification (p = 0.040), whereas those with partial inactivation demonstrated higher vascularity (p < 0.001). Hormonal levels remained within normal ranges, with no significant differences between the groups. Multivariate logistic regression identified nodular vascularity (p < 0.001) as an independent predictor of nodule inactivation after RFA. Conclusion: In conclusion, this study found that therapeutic RFA effectively achieves high rates of complete inactivation in benign thyroid nodules, with the degree of inactivation mainly influenced by nodule vascularity and calcifications.

References

[1]  Li, Y., Jin, C., Li, J., Tong, M., Wang, M., Huang, J., et al. (2021) Prevalence of Thyroid Nodules in China: A Health Examination Cohort-Based Study. Frontiers in Endocrinology, 12, Article 676144.
https://doi.org/10.3389/fendo.2021.676144
[2]  Muhammad, H., Tehreem, A. and Russell, J.O. (2022) Radiofrequency Ablation and Thyroid Cancer: Review of the Current Literature. American Journal of Otolaryngology, 43, Article ID: 103204.
https://doi.org/10.1016/j.amjoto.2021.103204
[3]  Cesareo, R., Palermo, A., Pasqualini, V., Cianni, R., Gaspa, G., Manfrini, S., et al. (2017) Radiofrequency Ablation for the Management of Thyroid Nodules: A Critical Appraisal of the Literature. Clinical Endocrinology, 87, 639-648.
https://doi.org/10.1111/cen.13422
[4]  Guth, S., Theune, U., Aberle, J., Galach, A. and Bamberger, C.M. (2009) Very High Prevalence of Thyroid Nodules Detected by High Frequency (13 MHz) Ultrasound Examination. European Journal of Clinical Investigation, 39, 699-706.
https://doi.org/10.1111/j.1365-2362.2009.02162.x
[5]  Muhammad, H., Santhanam, P. and Russell, J.O. (2021) Radiofrequency Ablation and Thyroid Nodules: Updated Systematic Review. Endocrine, 72, 619-632.
https://doi.org/10.1007/s12020-020-02598-6
[6]  Orloff, L.A., Noel, J.E., Stack, B.C., Russell, M.D., Angelos, P., Baek, J.H., et al. (2021) Radiofrequency Ablation and Related Ultrasound-Guided Ablation Technologies for Treatment of Benign and Malignant Thyroid Disease: An International Multidisciplinary Consensus Statement of the American Head and Neck Society Endocrine Surgery Section with the Asia Pacific Society of Thyroid Surgery, Associazione Medici Endocrinologi, British Association of Endocrine and Thyroid Surgeons, European Thyroid Association, Italian Society of Endocrine Surgery Units, Korean Society of Thyroid Radiology, Latin American Thyroid Society, and Thyroid Nodules Therapies Association. Head & Neck, 44, 633-660.
https://doi.org/10.1002/hed.26960
[7]  Petrasova, H., Slaisova, R., Rohan, T., Stary, K., Kyclova, J., Pavlik, T., et al. (2022) Contrast‐enhanced Ultrasonography for Differential Diagnosis of Benign and Malignant Thyroid Lesions: Single-Institutional Prospective Study of Qualitative and Quantitative CEUS Characteristics. Contrast Media & Molecular Imaging, 2022, Article ID: 8229445.
https://doi.org/10.1155/2022/8229445
[8]  Ma, X., Zhang, B., Ling, W., Liu, R., Jia, H., Zhu, F., et al. (2015) Contrast-Enhanced Sonography for the Identification of Benign and Malignant Thyroid Nodules: Systematic Review and Meta-Analysis. Journal of Clinical Ultrasound, 44, 199-209.
https://doi.org/10.1002/jcu.22311
[9]  Wang, Y., Dong, T., Nie, F., Wang, G., Liu, T. and Niu, Q. (2021) Contrast-Enhanced Ultrasound in the Differential Diagnosis and Risk Stratification of ACR TI-RADS Category 4 and 5 Thyroid Nodules with Non-Hypovascular. Frontiers in Oncology, 11, Article 662273.
https://doi.org/10.3389/fonc.2021.662273
[10]  Sengupta, S., Araujo, A.A., Shindo, M.L. and Park, B.J. (2024) Radiomic Texture Analysis for Classification of Radiofrequency Ablated Thyroid Nodules. Medical Imaging 2024: Imaging Informatics for Healthcare, Research, and Applications, San Diego, 18-23 February 2024, 160-166.
https://doi.org/10.1117/12.3008536
[11]  Xu, D., et al. (2016) Radiofrequency Ablation for Postsurgical Thyroid Removal of Differentiated Thyroid Carcinoma. American Journal of Translational Research, 8, 1876-1885.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4859916/
[12]  Lin, Y., Shi, Y., Tang, X., Ding, M., He, Y., Li, P., et al. (2022) Significance of Radiofrequency Ablation in Large Solid Benign Thyroid Nodules. Frontiers in Endocrinology, 13, Article 902484.
https://doi.org/10.3389/fendo.2022.902484
[13]  Jung, S.L., Baek, J.H., Lee, J.H., Shong, Y.K., Sung, J.Y., Kim, K.S., et al. (2018) Efficacy and Safety of Radiofrequency Ablation for Benign Thyroid Nodules: A Prospective Multicenter Study. Korean Journal of Radiology, 19, 167-174.
https://doi.org/10.3348/kjr.2018.19.1.167
[14]  Xu, D., Wang, L., Yang, Y., Li, M., Zheng, C., Qiu, X., et al. (2019) Safety and Efficacy of Ultrasound-Guided Percutaneous Thermal Ablation in Treating Low-Risk Papillary Thyroid Microcarcinoma: A Pilot and Feasibility Study. Journal of Cancer Research and Therapeutics, 15, 1522-1529.
https://doi.org/10.4103/jcrt.jcrt_214_19
[15]  Nguyen, V.B., Nguyen, T.X., Nguyen, V.V.H., Nguyen, H.T., Nguyen, D.T. and Le, C.V. (2021) Efficacy and Safety of Single-Session Radiofrequency Ablation in Treating Benign Thyroid Nodules: A Short-Term Prospective Cohort Study. International Journal of Endocrinology, 2021, Article ID: 7556393.
https://doi.org/10.1155/2021/7556393
[16]  Motaghed, Z., Chegeni, H., Mosadeghkhah, A., Azimi Aval, M., Gerami, R. and Ebrahiminik, H. (2023) Effect of Ultrasound Parameters of Benign Thyroid Nodules on Radiofrequency Ablation Efficacy. BMC Medical Imaging, 23, Article No. 85.
https://doi.org/10.1186/s12880-023-01044-z
[17]  Deandrea, M., Trimboli, P., Mormile, A., Cont, A.T., Milan, L., Buffet, C., et al. (2021) Determining an Energy Threshold for Optimal Volume Reduction of Benign Thyroid Nodules Treated by Radiofrequency Ablation. European Radiology, 31, 5189-5197.
https://doi.org/10.1007/s00330-020-07532-y
[18]  Lyung Jung, S. (2022) Advanced Techniques for Thyroid Nodule Radiofrequency Ablation. Techniques in Vascular and Interventional Radiology, 25, Article ID: 100820.
https://doi.org/10.1016/j.tvir.2022.100820
[19]  Navin, P.J., Thompson, S.M., Kurup, A.N., Lee, R.A., Callstrom, M.R., Castro, M.R., et al. (2022) Radiofrequency Ablation of Benign and Malignant Thyroid Nodules. RadioGraphics, 42, 1812-1828.
https://doi.org/10.1148/rg.220021
[20]  Li, Y., He, H., Li, W., Zhao, J., Ge, N., Zhang, Y., et al. (2022) Efficacy and Safety of Radiofrequency Ablation for Calcified Benign Thyroid Nodules: Results of over 5 Years’ Follow-up. BMC Medical Imaging, 22, Article No. 75.
https://doi.org/10.1186/s12880-022-00795-5
[21]  Chan, S.J., Betcher, M.C., Kuo, E.J., McManus, C.M., Lee, J.A. and Kuo, J.H. (2024) Trends in Thyroid Function Following Radiofrequency Ablation of Benign, Nonfunctioning Thyroid Nodules: A Single Institution Review. The American Journal of Surgery, 237, Article ID: 115793.
https://doi.org/10.1016/j.amjsurg.2024.115793
[22]  Tang, X., Li, P., Zhai, B. and Zhu, X. (2021) Changes in Thyroid Antibody and T Lymphocyte Subsets after Radiofrequency Ablation of Thyroid Nodules in Patients with Autoimmune Thyroiditis. Journal of Cancer Research and Therapeutics, 17, 638-643.
https://doi.org/10.4103/jcrt.jcrt_1421_20
[23]  Rodriguez Escobedo, R., Martinez Tames, G., Lanes Iglesias, S., Alonso Felgueroso, C., Montes Garcia, A.M., Prieto Fernandez, A., et al. (2022) Efficacy in Size and Symptom Reduction of Radiofrequency Ablation of Benign Non-Functioning Thyroid Nodules. Endocrinología, Diabetes y Nutrición, 69, 194-200.
https://doi.org/10.1016/j.endien.2022.02.018
[24]  Kim, C., Lee, J.H., Choi, Y.J., Kim, W.B., Sung, T.Y. and Baek, J.H. (2016) Complications Encountered in Ultrasonography-Guided Radiofrequency Ablation of Benign Thyroid Nodules and Recurrent Thyroid Cancers. European Radiology, 27, 3128-3137.
https://doi.org/10.1007/s00330-016-4690-y
[25]  Wang, J., Wu, T., Hu, K., Xu, W., Zheng, B., Tong, G., et al. (2017) Complications Following Radiofrequency Ablation of Benign Thyroid Nodules: A Systematic Review. Chinese Medical Journal, 130, 1361-1370.
https://doi.org/10.4103/0366-6999.206347
[26]  Hussain, I., Zulfiqar, F., Li, X., Ahmad, S. and Aljammal, J. (2021) Safety and Efficacy of Radiofrequency Ablation of Thyroid Nodules—Expanding Treatment Options in the United States. Journal of the Endocrine Society, 5, bvab110.
https://doi.org/10.1210/jendso/bvab110
[27]  Wang, N., Zheng, B., Wu, T., Tan, L., Lian, Y., Ma, Y., et al. (2021) Thyroid Dysfunction Following Radiofrequency Ablation for Benign Thyroid Nodules: More Likely to Occur within One-Week and in High-Risk Population. International Journal of Hyperthermia, 38, 1060-1068.
https://doi.org/10.1080/02656736.2021.1950849

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133