全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于SenticNet的电商客服对话细粒度情感波动分析
Fine-Grained Emotion Fluctuation Analysis of E-Commerce Customer Service Dialogues Based on SenticNet

DOI: 10.12677/ssem.2025.141004, PP. 24-36

Keywords: 对话情感分析,上下文依赖,情绪波动曲线,电商客服
Dialogue Sentiment Analysis
, Cross-Sentence Context, Emotion Fluctuation Curve, E-Commerce Customer Service

Full-Text   Cite this paper   Add to My Lib

Abstract:

电商的迅速发展为消费者带来了便捷,但客户服务面临的挑战也日益增多。客服响应效率与问题解决效果对用户体验至关重要,然而目前广泛采用的事后评价机制无法对用户情绪进行即时监控,难以及时识别和处理用户情绪波动,限制了服务满意度的提升。为克服这一不足,文章提出了一种基于SenticNet情感词辅助的跨句上下文对话情绪分类模型(SLED-EC)。该模型不仅整合了词语级与句子级的情感识别任务,以更精细地捕捉情感细节,还通过分析上下文信息来识别情绪的转变点,构建情感波动曲线,动态捕获多轮对话中的情感变化。实验结果表明,SLED-EC在准确率(67.78%)、召回率(83.81%)和F1值(72.36%)方面优于基准模型,展示了其在客服对话场景中情感分析的优势。该研究为电商客服系统提供了一种新的解决方案,有助于提升用户满意度和优化服务体验。
The rapid advancement of e-commerce has significantly enhanced consumer convenience, yet it has simultaneously exacerbated the challenges faced by customer service. Customer service response efficiency and problem-solving effectiveness are critical to the user experience. However, widely adopted post-feedback mechanisms are inadequate for real-time monitoring of user emotions, hindering timely identification and management of emotional fluctuations, which limits improvements in service satisfaction. To address this shortcoming, this paper proposes a SenticNet lexicon-assisted cross-sentence contextual dialogue emotion classification model (SLED-EC). The proposed model integrates both word-level and sentence-level emotion recognition tasks, enabling more precise capture of emotional nuances. Additionally, it analyzes contextual information to identify emotional transition points and constructs emotional fluctuation curves, dynamically capturing emotional changes in multi-turn dialogues. Experimental results demonstrate that SLED-EC significantly outperforms baseline models in accuracy (67.78%), recall (83.81%), and F1-score (72.36%), underscoring its advantages in emotion analysis for customer service dialogue scenarios. This study offers a novel solution for e-commerce customer service systems, contributing to improved user satisfaction and optimized service experience.

References

[1]  任菊香, 刘忠宝. 融合多粒度语义特征的中文情感分析方法[J]. 华东师范大学学报(自然科学版), 2023(6): 95-107.
[2]  王昆, 郑毅, 方书雅, 等. 基于文本筛选和改进BERT的长文本方面级情感分析[J]. 计算机应用, 2020, 40(10): 2838-2844.
[3]  Poria, S., Cambria, E., Hazarika, D., Majumder, N., Zadeh, A. and Morency, L. (2017) Context-Dependent Sentiment Analysis in User-Generated Videos. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Vancouver, July 2017, 873-883.
https://doi.org/10.18653/v1/p17-1081
[4]  Majumder, N., Poria, S., Hazarika, D., Mihalcea, R., Gelbukh, A. and Cambria, E. (2019) DialogueRNN: An Attentive RNN for Emotion Detection in Conversations. Proceedings of the AAAI Conference on Artificial Intelligence, 33, 6818-6825.
https://doi.org/10.1609/aaai.v33i01.33016818
[5]  Poria, S., Majumder, N., Mihalcea, R. and Hovy, E. (2019) Emotion Recognition in Conversation: Research Challenges, Datasets, and Recent Advances. IEEE Access, 7, 100943-100953.
https://doi.org/10.1109/access.2019.2929050
[6]  Liu, Y., Bangerter, L.R., Rovine, M.J., Zarit, S.H. and Almeida, D.M. (2018) Intrinsic Emotional Fluctuation in Daily Negative Affect across Adulthood. The Journals of Gerontology: Series B, 73, 100-112.
[7]  Lee, C., Busso, C., Lee, S. and Narayanan, S.S. (2009) Modeling Mutual Influence of Interlocutor Emotion States in Dyadic Spoken Interactions. Inter Speech 2009, Brighton, 6-10 September 2009, 1983-1986.
https://doi.org/10.21437/interspeech.2009-480
[8]  Tang, D., Qin, B. and Liu, T. (2015) Document Modeling with Gated Recurrent Neural Network for Sentiment Classification. Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, 17-21 September 2015,1422-1432.
https://doi.org/10.18653/v1/d15-1167
[9]  Naseem, U., Razzak, I., Musial, K. and Imran, M. (2020) Transformer Based Deep Intelligent Contextual Embedding for Twitter Sentiment Analysis. Future Generation Computer Systems, 113, 58-69.
https://doi.org/10.1016/j.future.2020.06.050
[10]  Sun, G., Zhang, C. and Woodland, P.C. (2021) Transformer Language Models with LSTM-Based Cross-Utterance Information Representation. ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, 6-11 June 2021, 7363-7367.
https://doi.org/10.1109/icassp39728.2021.9414477
[11]  Song, K., Bing, L., Gao, W., Lin, J., Zhao, L., Wang, J., et al. (2019) Using Customer Service Dialogues for Satisfaction Analysis with Context-Assisted Multiple Instance Learning. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, November 2019, 198-207.
https://doi.org/10.18653/v1/d19-1019
[12]  Mao, Y., Cai, F., Guo, Y. and Chen, H. (2022) Incorporating Emotion for Response Generation in Multi-Turn Dialogues. Applied Intelligence, 52, 7218-7229.
[13]  Devlin, J. (2018) Bert: Pre-Training of Deep Bidirectional Transformers for Language Understanding.
[14]  Koroteev, M.V. (2021) BERT: A Review of Applications in Natural Language Processing and Understanding.
[15]  Munikar, M., Shakya, S. and Shrestha, A. (2019) Fine-Grained Sentiment Classification Using Bert. 2019 Artificial Intelligence for Transforming Business and Society (AITB), Kathmandu, 5 November 2019, 1-5.
https://doi.org/10.1109/aitb48515.2019.8947435
[16]  Zhang, Z., Guo, T. and Chen, M. (2021) Dialogue BERT. Proceedings of the 30th ACM International Conference on Information & Knowledge Management, New York, 1-5 November 2021, 3647-3651.
https://doi.org/10.1145/3459637.3482085
[17]  Yang, H. and Shen, J. (2021) Emotion Dynamics Modeling via BERT. 2021 International Joint Conference on Neural Networks (IJCNN), Shenzhen, 18-22 July 2021, 1-8.
https://doi.org/10.1109/ijcnn52387.2021.9533860
[18]  Ni, J., Young, T., Pandelea, V., Xue, F. and Cambria, E. (2022) Recent Advances in Deep Learning Based Dialogue Systems: A Systematic Survey. Artificial Intelligence Review, 56, 3055-3155.
https://doi.org/10.1007/s10462-022-10248-8
[19]  SenticNet.
https://sentic.net/
[20]  Poria, S., Hazarika, D., Majumder, N., Naik, G., Cambria, E. and Mihalcea, R. (2019) MELD: A Multimodal Multi-Party Dataset for Emotion Recognition in Conversations.
[21]  GitHub (2018) JDDC-Baseline-Seq2Seq.
https://github.com/SimonJYang/JDDC-Baseline-Seq2Seq/tree/master/data
[22]  Kim, T. and Vossen, P. (2021) Emoberta: Speaker-Aware Emotion Recognition in Conversation with Roberta.
[23]  Kumar, A., Irsoy, O., Ondruska, P., Iyyer, M., Bradbury, J., Gulrajani, I. and Socher, R. (2016) Ask Me Anything: Dynamic Memory Networks for Natural Language Processing. Proceedings of the 33rd International Conference on Machine Learning, New York, 19-24 June 2016, 1378-1387.
[24]  Li, J., Zhang, M., Ji, D. and Liu, Y. (2020) Multi-Task Learning with Auxiliary Speaker Identification for Conversational Emotion Recognition.
[25]  Ghosal, D., Majumder, N., Poria, S., Chhaya, N. and Gelbukh, A. (2019) Dialoguegcn: A Graph Convolutional Neural Network for Emotion Recognition in Conversation. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, November 2019, 154-164.
https://doi.org/10.18653/v1/d19-1015

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133