全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

饮食与血管钙化的相关研究
Research on the Relationship between Diet and Vascular Calcification

DOI: 10.12677/acm.2025.151007, PP. 38-43

Keywords: 饮食成分,炎症,血管钙化
Dietary Component
, Inflammation, Vascular Calcification

Full-Text   Cite this paper   Add to My Lib

Abstract:

血管钙化(Vascular calcification, VC)作为多种心血管疾病(Cardiovascular disease, CVD)的共同病理表现过程,与心血管疾病高发病率和死亡率密切相关。而慢性炎症已被证明在VC的进展中起重要作用。饮食模式主要是促炎性饮食,可影响全身炎症的强度,进而参与VC的发生和进展。本文就促炎性饮食成分与VC的关系及由饮食诱导的慢性全身性炎症及氧化应激从而诱导VC的过程做一综述,以期通过考虑饮食对VC的影响在改善心血管健康和延缓血管钙化方面取得进展。
Vascular calcification (VC), as the common pathological course of cardiovascular disease (CVD), has been proved to be closely related to the high incidence of a disease and mortality. Chronic inflammation has been shown to play an important role in the progression of VC. Dietary patterns, primarily pro-inflammatory diets, can influence the intensity of systemic inflammation and, in turn, participate in the occurrence and progression of VC. This article reviews the relationship between pro-inflammatory dietary components and VC and the process of oxidative stress and VC induction by diet-induced chronic systemic inflammation.

References

[1]  The, W. (2023) Report on Cardiovascular Health and Diseases in China 2022: An Updated Summary. Biomedical and Environmental Sciences, 36, 669-701.
[2]  Cai, X., Tintut, Y. and Demer, L.L. (2023) A Potential New Link between Inflammation and Vascular Calcification. Journal of the American Heart Association, 12, e028358.
https://doi.org/10.1161/jaha.122.028358
[3]  Rodríguez-Vera, D., Vergara-Castañeda, A., Lazcano-Orozco, D.K., Ramírez-Vélez, G., Vivar-Sierra, A., Araiza-Macías, M.J., et al. (2021) Inflammation Parameters Associated with Metabolic Disorders: Relationship between Diet and Microbiota. Metabolic Syndrome and Related Disorders, 19, 469-482.
https://doi.org/10.1089/met.2021.0022
[4]  Rodríguez-Cruz, M., del Rocío Cruz-Guzmán, O., Almeida-Becerril, T., Solís-Serna, A.D., Atilano-Miguel, S., Sánchez-González, J.R., et al. (2018) Potential Therapeutic Impact of Omega-3 Long Chain-Polyunsaturated Fatty Acids on Inflammation Markers in Duchenne Muscular Dystrophy: A Double-Blind, Controlled Randomized Trial. Clinical Nutrition, 37, 1840-1851.
https://doi.org/10.1016/j.clnu.2017.09.011
[5]  Wu, Q., Gao, Z., Yu, X. and Wang, P. (2022) Dietary Regulation in Health and Disease. Signal Transduction and Targeted Therapy, 7, Article No. 252.
https://doi.org/10.1038/s41392-022-01104-w
[6]  Smidowicz, A. and Regula, J. (2015) Effect of Nutritional Status and Dietary Patterns on Human Serum C-Reactive Protein and Interleukin-6 Concentrations. Advances in Nutrition, 6, 738-747.
https://doi.org/10.3945/an.115.009415
[7]  Marshall, S., Petocz, P., Duve, E., Abbott, K., Cassettari, T., Blumfield, M., et al. (2020) The Effect of Replacing Refined Grains with Whole Grains on Cardiovascular Risk Factors: A Systematic Review and Meta-Analysis of Randomized Controlled Trials with GRADE Clinical Recommendation. Journal of the Academy of Nutrition and Dietetics, 120, 1859-1883.E31.
https://doi.org/10.1016/j.jand.2020.06.021
[8]  Zawada, A., Machowiak, A., Rychter, A.M., Ratajczak, A.E., Szymczak-Tomczak, A., Dobrowolska, A., et al. (2022) Accumulation of Advanced Glycation End-Products in the Body and Dietary Habits. Nutrients, 14, Article 3982.
https://doi.org/10.3390/nu14193982
[9]  Boyer, A.L., Arikawa, A.Y., Schmitz, K.H. and Sturgeon, K.M. (2021) Association of Inflammatory Diets with Inflammatory Biomarkers in Women at High Genetic Risk for Breast Cancer. Nutrition and Cancer, 74, 816-819.
https://doi.org/10.1080/01635581.2021.1986554
[10]  Alves, B., Silva, T. and Spritzer, P. (2016) Sedentary Lifestyle and High-Carbohydrate Intake Are Associated with Low-Grade Chronic Inflammation in Post-Menopause: A Cross-Sectional Study. Revista Brasileira de Ginecologia e Obstetrícia/RBGO Gynecology and Obstetrics, 38, 317-324.
https://doi.org/10.1055/s-0036-1584582
[11]  Poetsch, F., Henze, L.A., Estepa, M., Moser, B., Pieske, B., Lang, F., et al. (2020) Role of SGK1 in the Osteogenic Transdifferentiation and Calcification of Vascular Smooth Muscle Cells Promoted by Hyperglycemic Conditions. International Journal of Molecular Sciences, 21, Article 7207.
https://doi.org/10.3390/ijms21197207
[12]  Helgadottir, H., Thorisdottir, B., Gunnarsdottir, I., Halldorsson, T.I., Palsson, G. and Thorsdottir, I. (2022) Lower Intake of Saturated Fatty Acids Is Associated with Improved Lipid Profile in a 6-Year-Old Nationally Representative Population. Nutrients, 14, Article 671.
https://doi.org/10.3390/nu14030671
[13]  Ference, B.A., Ginsberg, H.N., Graham, I., et al. (2017) Low-Density Lipoproteins Cause Atherosclerotic Cardiovascular Disease. 1. Evidence from Genetic, Epidemiologic, and Clinical Studies. A Consensus Statement from the European Atherosclerosis Society Consensus Panel. European Heart Journal, 38, 2459-2472.
[14]  Maki, K.C., Dicklin, M.R. and Kirkpatrick, C.F. (2021) Saturated Fats and Cardiovascular Health: Current Evidence and Controversies. Journal of Clinical Lipidology, 15, 765-772.
https://doi.org/10.1016/j.jacl.2021.09.049
[15]  Durham, A.L., Speer, M.Y., Scatena, M., Giachelli, C.M. and Shanahan, C.M. (2018) Role of Smooth Muscle Cells in Vascular Calcification: Implications in Atherosclerosis and Arterial Stiffness. Cardiovascular Research, 114, 590-600.
https://doi.org/10.1093/cvr/cvy010
[16]  Folwaczny, A., Waldmann, E., Altenhofer, J., Henze, K. and Parhofer, K.G. (2021) Postprandial Lipid Metabolism in Normolipidemic Subjects and Patients with Mild to Moderate Hypertriglyceridemia: Effects of Test Meals Containing Saturated Fatty Acids, Mono-Unsaturated Fatty Acids, or Medium-Chain Fatty Acids. Nutrients, 13, Article 1737.
https://doi.org/10.3390/nu13051737
[17]  Mensink, R.P. and Katan, M.B. (1990) Effect of Dietary Trans Fatty Acids on High-Density and Low-Density Lipoprotein Cholesterol Levels in Healthy Subjects. New England Journal of Medicine, 323, 439-445.
https://doi.org/10.1056/nejm199008163230703
[18]  Valenzuela, C.A., Baker, E.J., Miles, E.A. and Calder, P.C. (2019) Eighteen-Carbon Trans Fatty Acids and Inflammation in the Context of Atherosclerosis. Progress in Lipid Research, 76, Article 101009.
https://doi.org/10.1016/j.plipres.2019.101009
[19]  Guggisberg, D., Burton-Pimentel, K.J., Walther, B., Badertscher, R., Blaser, C., Portmann, R., et al. (2022) Molecular Effects of the Consumption of Margarine and Butter Varying in Trans Fat Composition: A Parallel Human Intervention Study. Lipids in Health and Disease, 21, Article No. 74.
https://doi.org/10.1186/s12944-022-01675-1
[20]  Baer, D.J., Judd, J.T., Clevidence, B.A. and Tracy, R.P. (2004) Dietary Fatty Acids Affect Plasma Markers of Inflammation in Healthy Men Fed Controlled Diets: A Randomized Crossover Study. The American Journal of Clinical Nutrition, 79, 969-973.
https://doi.org/10.1093/ajcn/79.6.969
[21]  Mozaffarian, D., Rimm, E.B., King, I.B., Lawler, R.L., McDonald, G.B. and Levy, W.C. (2004) Trans Fatty Acids and Systemic Inflammation in Heart Failure. The American Journal of Clinical Nutrition, 80, 1521-1525.
https://doi.org/10.1093/ajcn/80.6.1521
[22]  Saito, Y., Nakamura, K., Miura, D., Yunoki, K., Miyoshi, T., Yoshida, M., et al. (2017) Suppression of Wnt Signaling and Osteogenic Changes in Vascular Smooth Muscle Cells by Eicosapentaenoic Acid. Nutrients, 9, Article 858.
https://doi.org/10.3390/nu9080858
[23]  Voelkl, J., Egli-Spichtig, D., Alesutan, I. and Wagner, C.A. (2021) Inflammation: A Putative Link between Phosphate Metabolism and Cardiovascular Disease. Clinical Science, 135, 201-227.
https://doi.org/10.1042/cs20190895
[24]  Lin, X., Shan, S., Xu, F., Zhong, J., Wu, F., Duan, J., et al. (2022) The Crosstalk between Endothelial Cells and Vascular Smooth Muscle Cells Aggravates High Phosphorus-Induced Arterial Calcification. Cell Death & Disease, 13, Article No. 650.
https://doi.org/10.1038/s41419-022-05064-5
[25]  Sage, A.P., Lu, J., Tintut, Y. and Demer, L.L. (2011) Hyperphosphatemia-Induced Nanocrystals Upregulate the Expression of Bone Morphogenetic Protein-2 and Osteopontin Genes in Mouse Smooth Muscle Cells in vitro. Kidney International, 79, 414-422.
https://doi.org/10.1038/ki.2010.390
[26]  Cao, J., Zu, X. and Liu, J. (2021) The Roles of Immune Cells in Atherosclerotic Calcification. Vascular, 30, 902-913.
https://doi.org/10.1177/17085381211032756
[27]  Li, C., Xu, M.M., Wang, K., Adler, A.J., Vella, A.T. and Zhou, B. (2018) Macrophage Polarization and Meta-Inflammation. Translational Research, 191, 29-44.
https://doi.org/10.1016/j.trsl.2017.10.004
[28]  Ménégaut, L., Jalil, A., Thomas, C. and Masson, D. (2019) Macrophage Fatty Acid Metabolism and Atherosclerosis: The Rise of PUFAs. Atherosclerosis, 291, 52-61.
https://doi.org/10.1016/j.atherosclerosis.2019.10.002
[29]  Vogel, A., Brunner, J.S., Hajto, A., Sharif, O. and Schabbauer, G. (2022) Lipid Scavenging Macrophages and Inflammation. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1867, Article 159066.
https://doi.org/10.1016/j.bbalip.2021.159066
[30]  Zhang, G., Qin, Q., Zhang, C., Sun, X., Kazama, K., Yi, B., et al. (2023) NDRG1 Signaling Is Essential for Endothelial Inflammation and Vascular Remodeling. Circulation Research, 132, 306-319.
https://doi.org/10.1161/circresaha.122.321837
[31]  García-Hernández, A., Arzate, H., Gil-Chavarría, I., Rojo, R. and Moreno-Fierros, L. (2012) High Glucose Concentrations Alter the Biomineralization Process in Human Osteoblastic Cells. Bone, 50, 276-288.
https://doi.org/10.1016/j.bone.2011.10.032
[32]  Agrafioti, P., Morin‐Baxter, J., Tanagala, K.K.K., Dubey, S., Sims, P., Lalla, E., et al. (2022) Decoding the Role of Macrophages in Periodontitis and Type 2 Diabetes Using Single‐Cell RNA‐Sequencing. The FASEB Journal, 36, e22136.
https://doi.org/10.1096/fj.202101198r
[33]  Zhong, S., Li, L., Shen, X., Li, Q., Xu, W., Wang, X., et al. (2019) An Update on Lipid Oxidation and Inflammation in Cardiovascular Diseases. Free Radical Biology and Medicine, 144, 266-278.
https://doi.org/10.1016/j.freeradbiomed.2019.03.036
[34]  Kay, A.M., Simpson, C.L. and Stewart, J.A. (2016) The Role of AGE/RAGE Signaling in Diabetes-Mediated Vascular Calcification. Journal of Diabetes Research, 2016, Article 6809703.
https://doi.org/10.1155/2016/6809703

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133