P-glycoprotein (P-gp), a member of the ATP-binding cassette (ABC) family of transporters, plays a crucial role in the development of multi-drug resistance (MDR) in cancer treatment. P-gp actively pumps chemotherapeutic drugs out of cancer cells, reducing their intracellular concentrations and thereby diminishing their efficacy. This review explores the mechanisms by which P-gp contributes to MDR, including intrinsic and acquired resistance. It also discusses various strategies to inhibit P-gp, such as blocking drug binding sites, interfering with ATP hydrolysis, and altering cell membrane integrity. The potential of fourth-generation P-gp inhibitors and other novel approaches to enhance the effectiveness of cancer therapies is also examined. Understanding and overcoming P-gp-mediated MDR is essential for improving therapeutic outcomes in cancer patients.
References
[1]
Brown, J.S., Amend, S.R., Austin, R.H., Gatenby, R.A., Hammarlund, E.U. and Pienta, K.J. (2023) Updating the Definition of Cancer. Molecular Cancer Research, 21, 1142-1147. https://doi.org/10.1158/1541-7786.mcr-23-0411
[2]
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660
[3]
Soerjomataram, I. and Bray, F. (2021) Planning for Tomorrow: Global Cancer Incidence and the Role of Prevention 2020-2070. Nature Reviews Clinical Oncology, 18, 663-672. https://doi.org/10.1038/s41571-021-00514-z
[4]
Fitzgerald, R.C., Antoniou, A.C., Fruk, L. and Rosenfeld, N. (2022) The Future of Early Cancer Detection. Nature Medicine, 28, 666-677. https://doi.org/10.1038/s41591-022-01746-x
[5]
Crosby, D., Bhatia, S., Brindle, K.M., Coussens, L.M., Dive, C., Emberton, M., et al. (2022) Early Detection of Cancer. Science, 375, eaay9040. https://doi.org/10.1126/science.aay9040
[6]
Duan, C., Yu, M., Xu, J., Li, B., Zhao, Y. and Kankala, R.K. (2023) Overcoming Cancer Multi-Drug Resistance (MDR): Reasons, Mechanisms, Nanotherapeutic Solutions, and Challenges. Biomedicine & Pharmacotherapy, 162, Article ID: 114643. https://doi.org/10.1016/j.biopha.2023.114643
[7]
Wiese, M. and Pajeva, I. (2001) Structure-activity Relationships of Multidrug Resistance Reversers. Current Medicinal Chemistry, 8, 685-713. https://doi.org/10.2174/0929867013373138
[8]
Ramos, A., Sadeghi, S. and Tabatabaeian, H. (2021) Battling Chemoresistance in Cancer: Root Causes and Strategies to Uproot Them. International Journal of Molecular Sciences, 22, Article No. 9451. https://doi.org/10.3390/ijms22179451
[9]
Wang, J., Wu, Z., Yang, Y., Teng, Q., Li, Y., Lei, Z., et al. (2021) ATP‐Binding Cassette (ABC) Transporters in Cancer: A Review of Recent Updates. Journal of Evidence-Based Medicine, 14, 232-256. https://doi.org/10.1111/jebm.12434
[10]
Karthika, C., Sureshkumar, R., Zehravi, M., Akter, R., Ali, F., Ramproshad, S., et al. (2022) Multidrug Resistance of Cancer Cells and the Vital Role of P-Glycoprotein. Life, 12, Article No. 897. https://doi.org/10.3390/life12060897
[11]
Al-Thubiani, W.S. (2023) The Role of P-Glycoprotein (p-Gp) in Cancer Multidrug Resistance (MDR): Challenges for Inhibiting P-Gp in the Context of Overcoming MDR. Journal of Pharmaceutical Research International, 35, 44-58. https://doi.org/10.9734/jpri/2023/v35i237422
[12]
Czornyj, L., Auzmendi, J. and Lazarowski, A. (2023) Transporter Hypothesis in Pharmacoresistant Epilepsies: Is It at the Central or Peripheral Level? In: Rocha, L.L., Lazarowski, A. and Cavalheiro, E.A., Eds., Pharmacoresistance in Epilepsy: From Genes and Molecules to Promising Therapies, Springer International Publishing, 85-107. https://doi.org/10.1007/978-3-031-36526-3_6
[13]
Chai, S., To, K.K. and Lin, G. (2010) Circumvention of Multi-Drug Resistance of Cancer Cells by Chinese Herbal Medicines. Chinese Medicine, 5, Article No. 26. https://doi.org/10.1186/1749-8546-5-26
[14]
Cai, M., Song, X., Li, X., Chen, M., Guo, J., Yang, D., et al. (2023) Current Therapy and Drug Resistance in Metastatic Castration-Resistant Prostate Cancer. Drug Resistance Updates, 68, Article ID: 100962. https://doi.org/10.1016/j.drup.2023.100962
[15]
Sears, J.E. and Boger, D.L. (2015) Total Synthesis of Vinblastine, Related Natural Products, and Key Analogues and Development of Inspired Methodology Suitable for the Systematic Study of Their Structure-function Properties. Accounts of Chemical Research, 48, 653-662. https://doi.org/10.1021/ar500400w
[16]
Huang, J. and Ecker, G.F. (2023) A Structure-Based View on Abc-Transporter Linked to Multidrug Resistance. Molecules, 28, Article No. 495. https://doi.org/10.3390/molecules28020495
[17]
Emmert, D., Campos, C.R., Ward, D., Lu, P., Namanja, H.A., Bohn, K., et al. (2014) Reversible Dimers of the Atypical Antipsychotic Quetiapine Inhibit P-Glycoprotein-Mediated Efflux in Vitro with Increased Binding Affinity and in Situ at the Blood-Brain Barrier. ACS Chemical Neuroscience, 5, 305-317. https://doi.org/10.1021/cn4002329
[18]
Tian, Y., Lei, Y., Wang, Y., Lai, J., Wang, J. and Xia, F. (2023) Mechanism of Multidrug Resistance to Chemotherapy Mediated by P-Glycoprotein (Review). International Journal of Oncology, 63, Article No. 119. https://doi.org/10.3892/ijo.2023.5567
[19]
Attia, M.S., Elsebaey, M.T., Yahya, G., Chopra, H., Marzouk, M.A., Yahya, A., et al. (2023) Pharmaceutical Polymers and P-Glycoprotein: Current Trends and Possible Outcomes in Drug Delivery. Materials Today Communications, 34, Article ID: 105318. https://doi.org/10.1016/j.mtcomm.2023.105318
[20]
Aashish, Muheem, A., Nehal, N., Sartaj, A., Baboota, S. and Ali, J. (2023) Importance of P-Gp Inhibitors and Nanoengineered Approaches for Effective Delivery of Anti-Retroviral Drugs across Barriers in HIV Management. Journal of Drug Delivery Science and Technology, 87, Article ID: 104791. https://doi.org/10.1016/j.jddst.2023.104791
[21]
Pop, I., Pop, L., Vitetta, E. and Ghetie, M. (2008) Generation of Multidrug Resistant Lymphoma Cell Lines Stably Expressing P-Glycoprotein. Oncology Reports, 19, 889-895. https://doi.org/10.3892/or.19.4.889
[22]
Guo, Y., Ashrafizadeh, M., Tambuwala, M.M., Ren, J., Orive, G. and Yu, G. (2024) P-glycoprotein (p-Gp)-Driven Cancer Drug Resistance: Biological Profile, Non-Coding RNAs, Drugs and Nanomodulators. Drug Discovery Today, 29, Article ID: 104161. https://doi.org/10.1016/j.drudis.2024.104161
[23]
Shen, Y. and Yan, Z. (2021) Systematic Prediction of Drug Resistance Caused by Transporter Genes in Cancer Cells. Scientific Reports, 11, Article No. 7400. https://doi.org/10.1038/s41598-021-86921-9
[24]
Liu, B., Yu, X., Liu, L., Wang, L., Wang, J., Huang, Q., et al. (2023) Modular Biomimetic Strategy Enabled Discovery of Simplified Pseudo-Natural Macrocyclic P-Glycoprotein Inhibitors Capable of Overcoming Multidrug Resistance. Journal of Medicinal Chemistry, 66, 2550-2565. https://doi.org/10.1021/acs.jmedchem.2c01424
[25]
Goel, N., Hashmi, Z., Khan, N., Ahmad, R. and Khan, W.H. (2023) Recent Strategies to Combat Multidrug Resistance. In: Wani, M.Y. and Ahmad, A., Eds., Non-Traditional Approaches to Combat Antimicrobial Drug Resistance, Springer Nature, 1-27. https://doi.org/10.1007/978-981-19-9167-7_1
[26]
Ahmad, A., Akhtar, J., Ahmad, M., Badruddeen, Khan, M.I., Singh, A., et al. (2024) Bedaquiline Delivery Innovations: A Review on Advancing MDR-TB Treatment Strategies. Recent Advances in Anti-Infective Drug Discovery, 20, 1-18. https://doi.org/10.2174/0127724344318310241018113206
[27]
Ravichandran, S.K., Keerthanah, S.M.T., Swarna, S. and Gopinath, R. (2024) Innovative Approaches in Combating Antimicrobial Resistance: A Comprehensive Review. International Journal of Pharmaceutical and Clinical Research, 16, 245-254.
[28]
Safaei, M., Khalighi, F., Behabadi, F.A., Abpeikar, Z., Goodarzi, A., Kouhpayeh, S.A., et al. (2023) Liposomal Nanocarriers Containing siRNA as Small Molecule-Based Drugs to Overcome Cancer Drug Resistance. Nanomedicine, 18, 1745-1768. https://doi.org/10.2217/nnm-2023-0176
[29]
Li, C., Sun, B. Q. and Gai, X. D. (2014). Compounds from Chinese Herbal Medicines as Reversal Agents for P-Glycoprotein-Mediated Multidrug Resistance in Tumours. Clinical and Translational Oncology, 16, 593-598.
[30]
Dey, S., Ramachandra, M., Pastan, I., Gottesman, M.M. and Ambudkar, S.V. (1997) Evidence for Two Nonidentical Drug-Interaction Sites in the Human P-Glycoprotein. Proceedings of the National Academy of Sciences, 94, 10594-10599. https://doi.org/10.1073/pnas.94.20.10594
[31]
Wang, L., Wang, X., Zhu, X., Zhong, L., Jiang, Q., Wang, Y., et al. (2024) Drug Resistance in Ovarian Cancer: From Mechanism to Clinical Trial. Molecular Cancer, 23, Article No. 66. https://doi.org/10.1186/s12943-024-01967-3
[32]
Kaveh Zenjanab, M., Alimohammadvand, S., Doustmihan, A., Kianian, S., Sadeghzadeh Oskouei, B., Mazloomi, M., et al. (2024) Paclitaxel for Breast Cancer Therapy: A Review on Effective Drug Combination Modalities and Nano Drug Delivery Platforms. Journal of Drug Delivery Science and Technology, 95, Article ID: 105567. https://doi.org/10.1016/j.jddst.2024.105567
[33]
Sosnik, A. (2013) Reversal of Multidrug Resistance by the Inhibition of ATP-Binding Cassette Pumps Employing “Generally Recognized as Safe” (GRAS) Nanopharmaceuticals: A Review. Advanced Drug Delivery Reviews, 65, 1828-1851. https://doi.org/10.1016/j.addr.2013.09.002
[34]
Daniel, D., Frengki, F., Jalaluddin, M., Sari, W.E., Rosmaidar, R., Hasriati, H., et al. (2024) Multi-Drug Resistance-1 (MDR-1) Gene Expression in MCF-7 Cells after Treated with Doxorubicin-Deoxyelephantopin Combination and Prediction of Inhibitory Activity against Pgp Receptors with in Silico. Jurnal Natural, 24, 140-145. https://doi.org/10.24815/jn.v24i3.33237
[35]
Henrique, R., Oliveira, A.I., Costa, V.L., Baptista, T., Martins, A.T., Morais, A., et al. (2013) Epigenetic Regulation of MDR1 Gene through Post-Translational Histone Modifications in Prostate Cancer. BMC Genomics, 14, Article No. 898. https://doi.org/10.1186/1471-2164-14-898
[36]
Varma, M. (2003) P-Glycoprotein Inhibitors and Their Screening: A Perspective from Bioavailability Enhancement. Pharmacological Research, 48, 347-359. https://doi.org/10.1016/s1043-6618(03)00158-0
[37]
Fortuna, A., Alves, G. and Falcão, A. (2011) In Vitro and in Vivo Relevance of the P-Glycoprotein Probe Substrates in Drug Discovery and Development: Focus on Rhodamine 123, Digoxin and Talinolol. Journal of Bioequivalence & Bioavailability, 1, 1-23. https://doi.org/10.4172/jbb.s2-001
[38]
van Asperen, J., van Tellingen, O., Sparreboom, A., Schinkel, A., Borst, P., Nooijen, W., et al. (1997) Enhanced Oral Bioavailability of Paclitaxel in Mice Treated with the P-Glycoprotein Blocker SDZ PSC 833. British Journal of Cancer, 76, 1181-1183. https://doi.org/10.1038/bjc.1997.530
[39]
Amin, M.L. (2013) P-Glycoprotein Inhibition for Optimal Drug Delivery. Drug Target Insights, 7, 27-34. https://doi.org/10.4137/dti.s12519
[40]
Liu, L.L., Liu, Y.E. and Fang, G.T. (2008) Reversal Effect of Panax Notoginseng Saponins on Multidrug Resistance Breast Cancer Cell MCF/ADM. Lishizhen Medicine and Materia Medica Research, 19, 954-956.
[41]
Johnson, Z.L. and Chen, J. (2017) Structural Basis of Substrate Recognition by the Multidrug Resistance Protein MRP1. Cell, 168, 1075-1085.e9. https://doi.org/10.1016/j.cell.2017.01.041
[42]
Clay, A.T. and Sharom, F.J. (2014) Multidrug Resistance Protein: P-Glycoprotein. In: You, G.F. and Morris, M.E., Eds., Drug Transporters: Molecular Characterization and Role in Drug Disposition, 2nd Edition, John Wiley & Sons, Inc., 141-160. https://doi.org/10.1002/9781118705308.ch9
[43]
Kang, M.J., Cho, J.Y., Shim, B.H., Kim, D.K. and Lee, J. (2009) Bioavailability Enhancing Activities of Natural Compounds from Medicinal Plants. Journal of Medicinal Plants Research, 3, 1204-1211.
[44]
Farha, M.A. and Brown, E.D. (2016) Strategies for Target Identification of Antimicrobial Natural Products. Natural Product Reports, 33, 668-680. https://doi.org/10.1039/c5np00127g
[45]
Dewanjee, S., Dua, T., Bhattacharjee, N., Das, A., Gangopadhyay, M., Khanra, R., et al. (2017) Natural Products as Alternative Choices for P-Glycoprotein (p-Gp) Inhibition. Molecules, 22, Article No. 871. https://doi.org/10.3390/molecules22060871
[46]
Marzorati, S., Verotta, L. and Trasatti, S.P. (2018) Green Corrosion Inhibitors from Natural Sources and Biomass Wastes. Molecules, 24, Article No. 48. https://doi.org/10.3390/molecules24010048
[47]
Roemer, T., Xu, D., Singh, S.B., Parish, C.A., Harris, G., Wang, H., et al. (2011) Confronting the Challenges of Natural Product-Based Antifungal Discovery. Chemistry & Biology, 18, 148-164. https://doi.org/10.1016/j.chembiol.2011.01.009
[48]
Sarker, S.D., Latif, Z. and Gray, A.I. (2006) An Introduction to Natural Products Isolation. In: Sarker, S.D., Latif, Z. and Gray, A.I., Eds., Natural Products Isolation, Humana Press, 1-25. https://doi.org/10.1385/1-59259-955-9:1
[49]
Skalli, S., Zaid, A. and Soulaymani, R. (2007) Drug Interactions with Herbal Medicines. Therapeutic Drug Monitoring, 29, 679-686. https://doi.org/10.1097/ftd.0b013e31815c17f6
[50]
Cragg, G.M., Grothaus, P.G. and Newman, D.J. (2009) Impact of Natural Products on Developing New Anti-Cancer Agents. Chemical Reviews, 109, 3012-3043. https://doi.org/10.1021/cr900019j
[51]
Li, J., Jaimes, K.F. and Aller, S.G. (2013) Refined Structures of Mouse P‐Glycoprotein. Protein Science, 23, 34-46. https://doi.org/10.1002/pro.2387
[52]
Robinson, K. and Tiriveedhi, V. (2020) Perplexing Role of P-Glycoprotein in Tumor Microenvironment. Frontiers in Oncology, 10, Article No. 265. https://doi.org/10.3389/fonc.2020.00265
[53]
Banerjee, S. and Kaushik, S. (2016) Role of P-Glycoprotein and its Inhibition in Cancer Therapy: A Review. International Journal of Pharma and Bio Sciences, 207, 207-219.