|
烯基高价碘的合成研究进展
|
Abstract:
近年来,有机高价碘试剂的反应性研究获得了迅猛的发展。有机高价碘试剂作为高效、多功能化的氧化剂,通常容易制备且操作简单。与传统的合成方法相比,该类试剂参与的反应表现出了许多独特的优点,并且具有与汞、铬、铅、铊等重金属试剂类似的反应性,但却没有这些试剂所带来的毒性和环境污染问题。基于此,有机高价碘试剂引起了化学合成工作者们越来越多的关注。但是笔者发现目前有机高价碘的反应报道绝大部分都是芳基高价碘,有关烯基高价碘的报道却寥寥无几。本文介绍有关芳基高价碘不同的反应性能和探索烯基高价碘的合成。
In recent years, the reactivity studies of organic hypervalent iodine reagents have gained rapid development. Organic hypervalent iodine reagents, as highly efficient and versatile oxidizing agents, are usually easy to prepare and simple to operate. Compared with conventional synthesis methods, the reactions involving these reagents exhibit many unique advantages and have similar reactivity to heavy metal reagents such as mercury, chromium, lead, thallium, etc., but without the toxicity and environmental pollution problems associated with these reagents. In this way, organic hypervalent iodine reagents have attracted more and more attention from the chemical synthesizers. However, the author found that most of the reports on the reactions of organic hypervalent iodine are aryl hypervalent iodine, and only a few reports on alkenyl hypervalent iodine. In this paper, we introduce the different reaction properties of aryl iodides and explore the synthesis of alkenyl iodides.
[1] | Willgerodt, C. (1886) Zur Kenntniss thiophenhaltigen Benzols. Journal für Praktische Chemie, 33, 479-483. https://doi.org/10.1002/prac.18860330144 |
[2] | Musher, J.I. (1969) The Chemistry of Hypervalent Molecules. Angewandte Chemie International Edition in English, 8, 54-68. https://doi.org/10.1002/anie.196900541 |
[3] | Pimentel, G.C. (1951) The Bonding of Trihalide and Bifluoride Ions by the Molecular Orbital Method. Journal of Chemical Physics, 19, Article 446. https://doi.org/10.1063/1.1748245 |
[4] | Hach, R.J. and Rundle, R.E. (1951) The Bonding of Trihalide and Bifluoride Ions by the Molecular Orbital Method. Journal of the American Chemical Society, 73, Article 4321. |
[5] | Powell, W.H. (1984) Treatment of Variable Valence in Organic Nomenclature (Lambda Convention) (Recommendations 1983). Pure and Applied Chemistry, 56, 769-778. https://doi.org/10.1351/pac198456060769 |
[6] | Yuan, Z., Zhao, T., Yu, T., Wang, J. and Wei, H. (2017) Hypervalent Iodine (III)-Mediated Oxidative Decarboxylation of β-Keto Acids. Asian Journal of Organic Chemistry, 6, 262-264. https://doi.org/10.1002/ajoc.201600607 |
[7] | Banerjee, S. (2023) Gold and Hypervalent Iodine (III): Liaisons over a Decade for Electrophilic Functional Group Transfer Reactions. Organic & Biomolecular Chemistry, 21, Article 1629. |
[8] | Zhang, B.B., Guo, B.Y. and Du, Y.F. (2021) Hypervalent Iodine Reagent-Mediated Reactions Involving Rearrangement Processes. New Journal of Chemistry, 45, Article 18815. |
[9] | Inamoto, K., Saito, T., Katsuno, M., Sakamoto, T. and Hiroya, K. (2007) Palladium-Catalyzed C-H Activation/Intramolecular Amination Reaction: A New Route to 3-Aryl/Alkylindazoles. Organic Letters, 9, 2931-2934. https://doi.org/10.1021/ol0711117 |
[10] | Wang, X., Lu, Y., Dai, H. and Yu, J. (2010) Pd (II)-Catalyzed Hydroxyl-Directed C-H Activation/C-O Cyclization: Expedient Construction of Dihydrobenzo Furans. Journal of the American Chemical Society, 132, 12203-12205. https://doi.org/10.1021/ja105366u |
[11] | Claraz, A. and Masson, G. (2018) Asymmetric Iodine Catalysis-Mediated Enantioselective Oxidative Transformations. Organic & Biomolecular Chemistry, 16, 5386-5402. https://doi.org/10.1039/c8ob01378k |
[12] | Berthiol, F. (2015) Reagent and Catalyst Design for Asymmetric Hypervalent Iodine Oxidations. Synthesis, 47, 587-603. https://doi.org/10.1055/s-0034-1379892 |
[13] | Ghosh, S., Pradhan, S. and Chatterjee, I. (2018) A Survey of Chiral Hypervalent Iodine Reagents in Asymmetric Syn-thesis. Beilstein Journal of Organic Chemistry, 14, 1244-126. https://doi.org/10.3762/bjoc.14.107 |
[14] | Zhang, X., Liu, M., Ge, H. and Zhang, Z. (2023) Second-Layer Chiral Environment-Induced Steric Hindrance Enables Catalyst Conformation Lockdown in Enantioselective Hypervalent Iodine Organocatalysis. ACS Catalysis, 13, 8273-8280. https://doi.org/10.1021/acscatal.3c02018 |
[15] | Varvoglis, A. (1997) Hypervalent Iodine in Organic Synthesis. Angewandte Chemie International Edition, 109, 1850-1851. |
[16] | Yoshimura, A. and Zhdankin, V.V. (2016) Advances in Synthetic Applications of Hypervalent Iodine Compounds. Chemical Reviews, 116, 3328-3435. https://doi.org/10.1021/acs.chemrev.5b00547 |
[17] | Silva, Jr. and Olofsson, B. (2011) Hypervalent Iodine Reagents in the Total Synthesis of Natural Products. Natural Product Reports, 28, Article 1722. https://doi.org/10.1039/c1np00028d |
[18] | Lee, K., Kim, D.Y. and Oh, D.Y. (1988) Reaction of Allyltrimethylsilane with an Aromatic Compound Using Hypervalent Organoiodine Compound: A New Allylation of Aromatic Compounds. Tetrahedron Letters, 29, 667-668. https://doi.org/10.1016/s0040-4039(00)80178-1 |
[19] | Ochiai, M., Ito, T., Takaoka, Y. and Masaki, Y. (1991) Generation of Allenyliodinanes and Their Reductive Iodonio-Claisen Rearrangement. Journal of the American Chemical Society, 113, 1319-1323. https://doi.org/10.1021/ja00004a037 |
[20] | Ochiai, M., Ito, T. and Masaki, Y. (1992) Ipso Selectivity in the Reductive Iodonio-Claisen Rearrangement of Allenyl (p-Methoxyaryl) Iodinanes. Journal of the Chemical Society, Chemical Communications, 1, 15-16. https://doi.org/10.1039/c39920000015 |
[21] | Gately, D.A., Luther, T.A., Norton, J.R., Miller, M.M. and Anderson, O.P. (1992) Reaction of mu.-Oxobis[(trifluoromethanesulfonato)(phenyl)iodine(III)] with Group 14 Propargyl Derivatives and a Propargyl Ether. The Journal of Organic Chemistry, 57, 6496-6502. |
[22] | Reddy, G.C. (1995) Hypervalent Iodine Oxidation Products of Papaverine and Its Microbial Metabolites. Tetrahedron Letters, 36, 1001-1002. https://doi.org/10.1016/0040-4039(94)02426-c |
[23] | Van De Water, R.W., Hoarau, C. and Pettus, T.R.R. (2003) Oxidative Dearomatization of Resorcinol Derivatives: Useful Conditions Leading to Valuable Cyclohexa-2,5-dienones. Tetrahedron Letters, 44, 5109-5113. https://doi.org/10.1016/s0040-4039(03)01118-3 |
[24] | Zhu, J., Germain, A.R. and Porco, J.A. (2004) Synthesis of Azaphilones and Related Molecules by Employing Cycloisomerization of O-Alkynylbenzaldehydes. Angewandte Chemie International Edition, 43, 1239-1243. https://doi.org/10.1002/anie.200353037 |
[25] | Li, Q., Lian, P., Tan, F., Zhu, G., Chen, C., Hao, Y., et al. (2020) Organocatalytic Enantioselective Construction of Heterocycle-Substituted Styrenes with Chiral Atropisomerism. Organic Letters, 22, 2448-2453. https://doi.org/10.1021/acs.orglett.0c00659 |
[26] | Hori, M., Guo, J., Yanagi, T., Nogi, K., Sasamori, T. and Yorimitsu, H. (2018) Sigmatropic Rearrangements of Hypervalent-Iodine-Tethered Intermediates for the Synthesis of Biaryls. Angewandte Chemie, 130, 4753-4757. https://doi.org/10.1002/ange.201801132 |
[27] | Huang, X., Zhang, Y., Zhang, C., Zhang, L., Xu, Y., Kong, L., et al. (2019) The Ortho-Difluoroalkylation of Aryliodanes with Enol Silyl Ethers: Rearrangement Enabled by a Fluorine Effect. Angewandte Chemie International Edition, 58, 5956-5961. https://doi.org/10.1002/anie.201900745 |
[28] | Sousa e Silva, F.C., Van, N.T. and Wengryniuk, S.E. (2019) Direct C-H Α-Arylation of Enones with Ari(O2Cr)2 Reagents. Journal of the American Chemical Society, 142, 64-69. https://doi.org/10.1021/jacs.9b11282 |
[29] | Zhao, W., Huang, X., Zhan, Y., Zhang, Q., Li, D., Zhang, Y., et al. (2019) Dearomative Dual Functionalization of Aryl Iodanes. Angewandte Chemie International Edition, 58, 17210-17214. https://doi.org/10.1002/anie.201909019 |
[30] | Tian, J., Luo, F., Zhang, Q., Liang, Y., Li, D., Zhan, Y., et al. (2020) Asymmetric Iodonio-[3,3]-Sigmatropic Rearrangement to Access Chiral Α-Aryl Carbonyl Compounds. Journal of the American Chemical Society, 142, 6884-6890. https://doi.org/10.1021/jacs.0c00783 |
[31] | Shafir, A. (2016) The Emergence of Sulfoxide and Iodonio-Based Redox Arylation as a Synthetic Tool. Tetrahedron Letters, 57, 2673-2682. https://doi.org/10.1016/j.tetlet.2016.05.013 |
[32] | Grelier, G., Darses, B. and Dauban, P. (2018) Hypervalent Organoiodine Compounds: From Reagents to Valuable Building Blocks in Synthesis. Beilstein Journal of Organic Chemistry, 14, 1508-1528. https://doi.org/10.3762/bjoc.14.128 |
[33] | Boelke, A., Finkbeiner, P. and Nachtsheim, B.J. (2018) Atom-Economical Group-Transfer Reactions with Hypervalent Iodine Compounds. Beilstein Journal of Organic Chemistry, 14, 1263-1280. https://doi.org/10.3762/bjoc.14.108 |
[34] | Hyatt, I.F.D., Dave, L., David, N., Kaur, K., Medard, M. and Mowdawalla, C. (2019) Hypervalent Iodine Reactions Utilized in Carbon-Carbon Bond Formations. Organic & Biomolecular Chemistry, 17, 7822-7848. https://doi.org/10.1039/c9ob01267b |
[35] | Akai, S., Kawashita, N., Wada, Y., Satoh, H., Alinejad, A.H., Kakiguchi, K., et al. (2006) Regioselective, Nucleophilic Carbon-Carbon Bond Formation at the C4-Position of Indoles Initiated by the Aromatic Pummerer-Type Reaction. Tetrahedron Letters, 47, 1881-1884. https://doi.org/10.1016/j.tetlet.2006.01.090 |
[36] | Zhdankin, V.V., Erickson, S.A. and Hanson, K.J. (1997) Preparation, X-Ray Crystal Structure, and Chemistry of ((arylsulfonyl)methyl) (phenyl)iodonium Triflates. Stable Alkyliodonium Salts. Journal of the American Chemical Society, 119, 4775-4776. https://doi.org/10.1021/ja9707926 |
[37] | Sheng, J., Wang, Y., Su, X., He, R. and Chen, C. (2017) Copper-Catalyzed [2+2+2] Modular Synthesis of Multisubstituted Pyridines: Alkenylation of Nitriles with Vinyliodonium Salts. Angewandte Chemie International Edition, 56, 4824-4828. https://doi.org/10.1002/anie.201700696 |
[38] | Rajkiewicz, A.A. and Kalek, M. (2018) N-Heterocyclic Carbene-Catalyzed Olefination of Aldehydes with Vinyliodonium Salts to Generate Α, β-Unsaturated Ketones. Organic Letters, 20, 1906-1909. https://doi.org/10.1021/acs.orglett.8b00447 |
[39] | Menon, R.S., Biju, A.T. and Nair, V. (2016) Recent Advances in N-Heterocyclic Carbene (NHC)-Catalysed Benzoin Reactions. Beilstein Journal of Organic Chemistry, 12, 444-461. https://doi.org/10.3762/bjoc.12.47 |
[40] | Flanigan, D.M., Romanov-Michailidis, F., White, N.A. and Rovis, T. (2015) Organocatalytic Reactions Enabled by NHeterocyclic Carbenes. Chemical Reviews, 115, 9307-9387. https://doi.org/10.1021/acs.chemrev.5b00060 |
[41] | Moore, J.L. and Rovis, T. (2009) Carbene Catalysts. In: Topics in Current Chemistry, Springer, 77-144. https://doi.org/10.1007/128_2008_18 |
[42] | Toh, Q.Y., McNally, A., Vera, S., Erdmann, N. and Gaunt, M.J. (2013) Organocatalytic C-H Bond Arylation of Aldehydes to Bis-Heteroaryl Ketones. Journal of the American Chemical Society, 135, 3772-3775. https://doi.org/10.1021/ja400051d |
[43] | Thiele, J. and Haakh, H. (1909) Abkömmlinge des Aethylens mit drei-und fünfwerthigem Jod. Justus Liebigs Annalen der Chemie, 369, 131-147. https://doi.org/10.1002/jlac.19093690204 |
[44] | Papoutsis, I., Spyroudis, S., Varvoglis, A., Callies, J.A. and Zhdankin, V.V. (1997) Novel Trifluoroethyliodonium Salts from Cyclic Enaminones and Their Thermal Decomposition. Tetrahedron Letters, 38, 8401-8404. https://doi.org/10.1016/s0040-4039(97)10232-5 |
[45] | Mészáros, Á., Székely, A., Stirling, A. and Novák, Z. (2018) Design of Trifluoroalkenyl Iodonium Salts for a Hypervalency-Aided Alkenylation-Cyclization Strategy: Metal-Free Construction of Aziridine Rings. Angewandte Chemie International Edition, 57, 6643-6647. https://doi.org/10.1002/anie.201802347 |