全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Computer-Assisted Automatic Harmonization Processes: A Synchronic Analysis of the Main Musical Tools

DOI: 10.4236/adr.2025.131001, PP. 1-13

Keywords: Automatic Harmonization, Harmonized Melody, Music Plug-In, Music Software, Music Technology

Full-Text   Cite this paper   Add to My Lib

Abstract:

Current computer tools aimed at the process of automatically harmonizing melodies have been reported here. These tools were divided into two lines of description: Plug-ins and Programs. It was observed that Plug-Ins are small lines of instruction inserted inside software that have more generic functions, while Programs are more robust lines of instruction that are designed solely for the purpose of enabling the harmonic automation of melodies. In order to carry out the research, searches were made using the keyword “automatic harmonization” on platforms, such as ResearchGate (RG), SciELO (Scientific Electronic Library Online), Academia.edu, Google Scholar and other databases. After selecting the most relevant computational harmonization tools, it was found that the results obtained were derived from different mathematical methods. In order to verify the efficiency of an automatic process of accessible harmonizers, a manually harmonized authorial melody was used to compare the subsequent computer harmonization processes performed by the internal Sibelius Plug-ins and Band-in-a-box. It was found that all of them can generate convincing harmonies that give different meanings to the melody. The results were briefly discussed, so that they could serve as a reference for composers and arrangers interested in the subject.

References

[1]  Almada, C. (2012). Harmonia Funcional (p. 289). Editora of Unicamp.
[2]  Bellgard, M., & Tsang, C. P. (1993). Harmonizing Music Using a Network of Boltzmann Machines. The University of Western Australia.
[3]  Cohn, R. (1998). Introduction to Neo-Riemannian Theory: A Survey and a Historical Perspective. Journal of Music Theory, 42, 167-180.
[4]  Costa, L. F. P. (2019). Harmonização musical automática baseada em redes neurais artificiais. Bachelor Thesis, Universidade Tecnológica Federal do Paraná.
[5]  De Haas, W. B., Magalhães, J. P., Wiering, F., & C. Veltkamp, R. (2013). Automatic Functional Harmonic Analysis. Computer Music Journal, 37, 37-53.
https://doi.org/10.1162/comj_a_00209
[6]  Ebcioglu, K. (1986). An Expert System for Chorale Harmonization. AAAI.
[7]  Eddy, S. R. (1996). Hidden Markov models. Current Opinion in Structural Biology, 6, 361-365.
https://doi.org/10.1016/s0959-440x(96)80056-x
[8]  Figueiró, C. (2008). Harmonização automática e interação usando Pd.
https://www.academia.edu/14954951/Harmoniza%C3%A7%C3%A3o_autom%C3%A1tica_e_intera%C3%A7%C3%A3o_usando_Pd
[9]  Gang, D., Lehmann, D., & Wagner, N. (1998). Tuning a Neural Network for Harmonizing Melodies in Real-Time. ICMC.
[10]  Green, D. M. (1979). Form in Tonal Music: An Introduction to Analysis. Holt, Rinehart and Winston.
[11]  Groves, R. (2013). Automatic Harmonization Using a Hidden Semi-Markov Model. Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, 9, 48-54.
https://doi.org/10.1609/aiide.v9i5.12654
[12]  Kaliakatsos-Papakostas, M., Velenis, K., Pasias, L., Alexandraki, C., & Cambouropoulos, E. (2023). An Hmm-Based Approach for Cross-Harmonization of Jazz Standards. Applied Sciences, 13, Article 1338.
https://doi.org/10.3390/app13031338
[13]  Kostka, S., & Santa, M. (2018). Materials and Techniques of Post-Tonal Music. Routledge.
[14]  Lee, H. R., & Jang, J.S. (2004). i-Ring: A System for Humming Transcription and Chord Generation. The 2004 IEEE International Conference on Multimedia and Expo (ICME) (IEEE Cat. No. 04TH8763) (pp. 1031-1034). IEEE.
[15]  Lindenmayer, A. (1968). Mathematical Models for Cellular Interactions in Development I. Filaments with One-Sided Inputs. Journal of Theoretical Biology, 18, 280-299.
https://doi.org/10.1016/0022-5193(68)90079-9
[16]  McIntyre, R. A. (1994). Bach in a Box: The Evolution of Four Part Baroque Harmony Using the Genetic Algorithm. Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence (pp. 852-857). IEEE.
https://doi.org/10.1109/icec.1994.349943
[17]  Moroni, A., Manzolli, J., Zuben, F. V., & Gudwin, R. (2002). Vox Populi: Evolutionary computation for Music Evolution. In P. J Bentley, & D. W. Corne (Eds.), Creative Evolutionary Systems (pp. 205-221). Elsevier.
https://doi.org/10.1016/b978-155860673-9/50044-6
[18]  Morris, D., Simon, I., & Basu, S. (2008). Exposing Parameters of a Trained Dynamic Model for Interactive Music Creation. AAAI08 Proceedings of the 23rd National Conference on Artificial Intelligence (pp. 784-791). AAAI Press.
[19]  Ponce de León, P. J., Iñesta, J. M., Calvo-Zaragoza, J., & Rizo, D. (2016). Data-Based Melody Generation through Multi-Objective Evolutionary Computation. Journal of Mathematics and Music, 10, 173-192.
https://doi.org/10.1080/17459737.2016.1188171
[20]  Raczyński, S. A., Fukayama, S., & Vincent, E. (2013). Melody Harmonization with Interpolated Probabilistic Models. Journal of New Music Research, 42, 223-235.
https://doi.org/10.1080/09298215.2013.822000
[21]  Román, Ó. C., & Caudeli, V. G. (2019). Implications of Musical Education in Creativity Develop. Creative Education, 10, 200-207.
https://doi.org/10.4236/ce.2019.101016
[22]  Rothgeb, J. (1979). Simulating Musical Skills by Digital Computer. Proceedings of the 1979 annual conference on—ACM 79 (pp. 121-125). ACM Press.
https://doi.org/10.1145/800177.810045
[23]  Santibáñez, N. A. E., & Biscainho, L. W. P. (2017). Harmonização musical automática: Tendências em inteligência computacional.
https://musmat.org/wp-content/uploads/2017/12/Nicolas.pdf
[24]  Shibata, N. (1991). A Neural Network-Based Method for Chord/Note Scale Association with Melodies. NEC Research & Development, 32, 453-459.
[25]  Simon, I., Morris, D., & Basu, S. (2008). MySong: Automatic Accompaniment Generation for Vocal Melodies. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 725-734). ACM.
https://doi.org/10.1145/1357054.1357169
[26]  Steels, L. (1986). Learning the Craft of Musical Composition. Michigan Publishing.
[27]  Tayyebi, S. F., Demir, Y., Nemutlu, M., & Karadoğan, C. (2019). Graphical Layout of the Musical Preferences Studies: An Overview on How the Studies on Musical Tastes Are Conducted. Art and Design Review, 8, 6-30.
https://doi.org/10.4236/adr.2020.81002
[28]  Temperley, D. (2012). Computational Models of Music Cognition. In D. Deutsch (Eds.), The Psychology of Music (pp. 327-368). Elsevier.
https://doi.org/10.1016/b978-0-12-381460-9.00008-0
[29]  Viterbi, A. (1967). Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm. IEEE Transactions on Information Theory, 13, 260-269.
https://doi.org/10.1109/tit.1967.1054010
[30]  Winograd, T. (1968). Linguistics and the Computer Analysis of Tonal Harmony. Journal of Music Theory, 12, 2-49.
https://doi.org/10.2307/842885
[31]  Yeh, Y., Hsiao, W., Fukayama, S., Kitahara, T., Genchel, B., Liu, H. et al. (2021). Automatic Melody Harmonization with Triad Chords: A Comparative Study. Journal of New Music Research, 50, 37-51.
https://doi.org/10.1080/09298215.2021.1873392
[32]  Zhu, Y., Hahn, S., Mak, S., Jiang, Y., & Rudin, C. J. (2021). BacHMMachine: An Interpretable and Scalable Model for Algorithmic Harmonization for Four-Part Baroque Chorales. arXiv: 2109.07623.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133