全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

2014~2023年全球国际高危克隆大肠埃希菌ST131的群体遗传特征研究
Global Population Genetic Characterisation of the International High Risk Clone Escherichia coli ST131, 2014~2023

DOI: 10.12677/acm.2024.14123113, PP. 527-535

Keywords: 大肠埃希菌,ST131,抗生素耐药基因(ARGs),毒力基因(VGs)
Escherichia coli
, ST131, Antibiotic Resistance Genes (ARGs), Virulence Genes (VGs)

Full-Text   Cite this paper   Add to My Lib

Abstract:

背景:国际高危克隆大肠埃希菌(Escherichia coli) ST131是重要的医院获得性病原体,会导致尿路感染,血流感染以及呼吸道感染等,甚至死亡,给全球健康带来重大威胁。目的:探究ST131菌株的群体遗传特征,为控制大肠埃希菌抗生素耐药问题提供更多见解。结果:本研究收集2014~2023年来自全球的7735株ST131菌株全基因组测序数据,对其基因组特征进行了分析发现sul1 (54.6%)、mph(A) (53.3%)、tet(A) (52.5%)、dfrA17 (49.4%)、sul2 (38.4%)、aph(3'')-Ib (38.0%),aph(6)-Id (37.6%),blaTEM-1B (37.2%),blaCTX-M-15 (37.2%)是全球ST131菌株的优势磺胺类、大环内酯类、四环素类、甲氧苄啶类、氨基糖苷类、β-内酰胺类抗生素耐药基因(ARGs)变体。blaCTX-M-27blaNDM-5blaKPC-2blaKPC-3的检出率随时间呈升高趋势;而aac(3)-IIdaac(6')-Ib-crblaOXA-1catB3的检出呈下降趋势;同时aadA5、aph(3'')-Ibaph(6)-IdblaTEM-1BdfrA17、mph(A)、tet(A)的检出呈波动变化(先升高再降低)。O25:H4是ST131的优势血清型。共检出543种毒力基因(VGs),与菌株粘附、定植等功能有关。抗生素耐药基因(ARGs)和毒力基因(VGs)的数量随时间增加而增多(P < 0.01)。结论:ST131大肠埃希菌在全球持续传播,菌株向着高耐药和高毒力的方向进化,正在对临床治疗造成重大威胁。
Background: The international high-risk clone Escherichia coli (ST131) is an important hospital-acquired pathogen that causes urinary tract infections, bloodstream infections, and respiratory infections, among other things, and even death, posing a major threat to global health. Objective: To explore the population genetic characteristics of ST131 strains and provide more insights into the problem of controlling antibiotic resistance in Escherichia coli. Results: In this study, we collected whole genome sequencing data of 7735 ST131 strains from around the world from 2014 to 2023 and analysed their genomic characteristics, found that sul1 (54.6%), mph(A) (53.3%), tet(A) (52.5%), dfrA17 (49.4%), sul2 (38.4%), aph(3'')-Ib (38.0%), aph(6)-Id (37.6%), blaTEM-1B (37.2%), blaCTX-M-15 (37.2%) are the dominant antibiotic-resistant gene(ARGs) variants of sulfonamides, macrolides, tetracyclines, mephedrone, aminoglycosides, and β-lactams for the global ST131 strain. blaCTX-M-27, blaNDM-5,

References

[1]  AbuAlshaar, A., Piazza, A., Mercato, A., Marchesini, F., Mattioni Marchetti, V., Bitar, I., et al. (2022) Oxa-244-Producing ST131 Escherichia coli from Surface and Groundwaters of Pavia Urban Area (Po Plain, Northern Italy). Frontiers in Microbiology, 13, Article 920319.
https://doi.org/10.3389/fmicb.2022.920319
[2]  Murray, C.J.L., Ikuta, K.S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A., et al. (2022) Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. The Lancet, 399, 629-655.
https://doi.org/10.1016/s0140-6736(21)02724-0
[3]  Naghavi, M., Vollset, S.E., Ikuta, K.S., Swetschinski, L.R., Gray, A.P., Wool, E.E., et al. (2024) Global Burden of Bacterial Antimicrobial Resistance 1990-2021: A Systematic Analysis with Forecasts to 2050. The Lancet, 404, 1199-1226.
https://doi.org/10.1016/s0140-6736(24)01867-1
[4]  Xia, C., Yan, R., Liu, C., Zhai, J., Zheng, J., Chen, W., et al. (2024) Epidemiological and Genomic Characteristics of Global blaNDM-Carrying Escherichia coli. Annals of Clinical Microbiology and Antimicrobials, 23, Article No. 58.
https://doi.org/10.1186/s12941-024-00719-x
[5]  Downing, T. (2015) Tackling Drug Resistant Infection Outbreaks of Global Pandemic Escherichia coli ST131 Using Evolutionary and Epidemiological Genomics. Microorganisms, 3, 236-267.
https://doi.org/10.3390/microorganisms3020236
[6]  Nicolas-Chanoine, M., Bertrand, X. and Madec, J. (2014) Escherichia coli ST131, an Intriguing Clonal Group. Clinical Microbiology Reviews, 27, 543-574.
https://doi.org/10.1128/cmr.00125-13
[7]  Mandomando, I., Vubil, D., Boisen, N., Quintó, L., Ruiz, J., Sigaúque, B., et al. (2020) Escherichia coli ST131 Clones Harbouring AggR and AAF/V Fimbriae Causing Bacteremia in Mozambican Children: Emergence of New Variant of fimH27 Subclone. PLOS Neglected Tropical Diseases, 14, e0008274.
https://doi.org/10.1371/journal.pntd.0008274
[8]  Abdelrahim, S.S., Fouad, M., Abdallah, N., Ahmed, R.F. and Zaki, S. (2021) Comparative Study of CTX-M-15 Producing Escherichia coli ST131 Clone Isolated from Urinary Tract Infections and Acute Diarrhoea. Infection and Drug Resistance, 14, 4027-4038.
https://doi.org/10.2147/idr.s325669
[9]  Rasoulinasab, M., Shahcheraghi, F., Feizabadi, M.M., Nikmanesh, B., Hajihasani, A. and Aslani, M.M. (2021) Distribution of Ciprofloxacin-Resistance Genes among ST131 and Non-St131 Clones of Escherichia coli Isolates with ESBL Phenotypes Isolated from Women with Urinary Tract Infection. Iranian Journal of Microbiology, 13, 294-302.
https://doi.org/10.18502/ijm.v13i3.6389
[10]  Hassuna, N.A., Rabea, E.M., Mahdi, W.K.M. and Abdelraheem, W.M. (2024) Biofilm Formation and Antimicrobial Resistance Pattern of Uropathogenic E. coli ST131 Isolated from Children with Malignant Tumors. The Journal of Antibiotics, 77, 324-330.
https://doi.org/10.1038/s41429-024-00704-8
[11]  Brumwell, A., Sutton, G., Lantos, P.M., Hoffman, K., Ruffin, F., Brinkac, L., et al. (2023) Escherichia coli ST131 Associated with Increased Mortality in Bloodstream Infections from Urinary Tract Source. Journal of Clinical Microbiology, 61, e0019923.
https://doi.org/10.1128/jcm.00199-23
[12]  Zhang, R., Li, Y., Chen, J., Liu, C., Sun, Q., Shu, L., et al. (2023) Population Genomic Analysis Reveals the Emergence of High-Risk Carbapenem-Resistant Escherichia coli among ICU Patients in China. Journal of Infection, 86, 316-328.
https://doi.org/10.1016/j.jinf.2023.02.004
[13]  Becerra-Aparicio, F., Gómez-Zorrilla, S., Hernández-García, M., Gijón, D., Siverio, A., Berbel, D., et al. (2023) Significant Increase of CTX-M-15-ST131 and Emergence of CTX-M-27-ST131 Escherichia coli High-Risk Clones Causing Healthcare-Associated Bacteraemia of Urinary Origin in Spain (ITUBRAS-2 Project). Journal of Antimicrobial Chemotherapy, 78, 2291-2296.
https://doi.org/10.1093/jac/dkad234
[14]  Biggel, M., Hoehn, S., Frei, A., Dassler, K., Jans, C. and Stephan, R. (2023) Dissemination of ESBL-Producing E. coli ST131 through Wastewater and Environmental Water in Switzerland. Environmental Pollution, 337, Article ID: 122476.
https://doi.org/10.1016/j.envpol.2023.122476
[15]  Balbuena-Alonso, M.G., Camps, M., Cortés-Cortés, G., Carreón-León, E.A., Lozano-Zarain, P. and Rocha-Gracia, R.d.C. (2023) Strain Belonging to an Emerging, Virulent Sublineage of ST131 Escherichia coli Isolated in Fresh Spinach, Suggesting That ST131 May Be Transmissible through Agricultural Products. Frontiers in Cellular and Infection Microbiology, 13, Article 1237725.
https://doi.org/10.3389/fcimb.2023.1237725
[16]  Kudinha, T. and Kong, F. (2022) Possible Step-Up in Prevalence for Escherichia coli ST131 from Fecal to Clinical Isolates: Inferred Virulence Potential Comparative Studies within Phylogenetic Group B2. Journal of Biomedical Science, 29, Article No. 78.
https://doi.org/10.1186/s12929-022-00862-7
[17]  Mohamed, M., Clabots, C., Porter, S.B., Bender, T., Thuras, P. and Johnson, J.R. (2019) Large Fecal Reservoir of Escherichia coli Sequence Type 131-H30 Subclone Strains That Are Shared within Households and Resemble Clinical ST131-H30 Isolates. The Journal of Infectious Diseases, 221, 1659-1668.
https://doi.org/10.1093/infdis/jiz669
[18]  Boll, E.J., Overballe-Petersen, S., Hasman, H., Roer, L., Ng, K., Scheutz, F., et al. (2020) Emergence of Enteroaggregative Escherichia coli within the ST131 Lineage as a Cause of Extraintestinal Infections. mBio, 11, e00353-20.
https://doi.org/10.1128/mbio.00353-20
[19]  Owens, R.C., Johnson, J.R., Stogsdill, P., Yarmus, L., Lolans, K. and Quinn, J. (2011) Community Transmission in the United States of a CTX-M-15-Producing Sequence Type ST131 Escherichia coli Strain Resulting in Death. Journal of Clinical Microbiology, 49, 3406-3408.
https://doi.org/10.1128/jcm.00993-11
[20]  Nejad, M.K., Hasani, A., Soofiyani, S.R., Nahandi, M.Z. and Hasani, A. (2023) Aptitude of Uropathogenic Escherichia coli in Renal Transplant Recipients: A Comprehensive Review on Characteristic Features, and Production of Extended Spectrum β-Lactamase. Current Microbiology, 80, 1369-1469.
https://doi.org/10.1007/s00284-023-03476-w
[21]  Matsumura, Y., Johnson, J.R., Yamamoto, M., Nagao, M., Tanaka, M., Takakura, S., et al. (2015) CTX-M-27-and Ctx-M-14-Producing, Ciprofloxacin-Resistant Escherichia coli of the h30 Subclonal Group within ST131 Drive a Japanese Regional ESBL Epidemic. Journal of Antimicrobial Chemotherapy, 70, 1639-1649.
https://doi.org/10.1093/jac/dkv017
[22]  Demirci, M., Ünlü, Ö. and İstanbullu Tosun, A. (2019) Detection of O25b-St131 Clone, CTX-M-1 and CTX-M-15 Genes via Real-Time PCR in Escherichia coli Strains in Patients with Utis Obtained from a University Hospital in Istanbul. Journal of Infection and Public Health, 12, 640-644.
https://doi.org/10.1016/j.jiph.2019.02.017
[23]  Woerther, P., Burdet, C., Chachaty, E. and Andremont, A. (2013) Trends in Human Fecal Carriage of Extended-Spectrum β-Lactamases in the Community: Toward the Globalization of CTX-M. Clinical Microbiology Reviews, 26, 744-758.
https://doi.org/10.1128/cmr.00023-13
[24]  Pitout, J.D.D. and Chen, L. (2023) The Significance of Epidemic Plasmids in the Success of Multidrug-Resistant Drug Pandemic Extraintestinal Pathogenic Escherichia coli. Infectious Diseases and Therapy, 12, 1029-1041.
https://doi.org/10.1007/s40121-023-00791-4
[25]  Rossolini, G.M., D’Andrea, M.M. and Mugnaioli, C. (2008) The Spread of CTX-M-Type Extended-Spectrum β-Lactamases. Clinical Microbiology and Infection, 14, 33-41.
https://doi.org/10.1111/j.1469-0691.2007.01867.x
[26]  Cantón, R., González-Alba, J.M. and Galán, J.C. (2012) CTX-M Enzymes: Origin and Diffusion. Frontiers in Microbiology, 3, Article 110.
https://doi.org/10.3389/fmicb.2012.00110
[27]  Karakonstantis, S., Kritsotakis, E.I. and Gikas, A. (2020) Treatment Options for K. Pneumoniae, P. Aeruginosa and A. Baumannii Co-Resistant to Carbapenems, Aminoglycosides, Polymyxins and Tigecycline: An Approach Based on the Mechanisms of Resistance to Carbapenems. Infection, 48, 835-851.
https://doi.org/10.1007/s15010-020-01520-6
[28]  Zou, H., Han, J., Zhao, L., Wang, D., Guan, Y., Wu, T., et al. (2023) The Shared NDM-Positive Strains in the Hospital and Connecting Aquatic Environments. Science of The Total Environment, 860, Article ID: 160404.
https://doi.org/10.1016/j.scitotenv.2022.160404
[29]  Wang, D., Berglund, B., Li, Q., Shangguan, X., Li, J., Liu, F., et al. (2023) Transmission of Clones of Carbapenem-Resistant Escherichia coli between a Hospital and an Urban Wastewater Treatment Plant. Environmental Pollution, 336, Article ID: 122455.
https://doi.org/10.1016/j.envpol.2023.122455
[30]  Bhattacharjee, A., Sands, K., Mitra, S., Basu, R., Saha, B., Clermont, O., et al. (2023) A Decade-Long Evaluation of Neonatal Septicaemic Escherichia coli: Clonal Lineages, Genomes, and New Delhi Metallo-β-Lactamase Variants. Microbiology Spectrum, 11, e0521522.
https://doi.org/10.1128/spectrum.05215-22
[31]  Tseng, C., Lin, W., Wu, A., Wang, M., Teng, C. and Wu, J. (2022) Escherichia coli Fimh Adhesins Act Synergistically with Papgii Adhesins for Enhancing Establishment and Maintenance of Kidney Infection. Journal of Microbiology, Immunology and Infection, 55, 44-50.
https://doi.org/10.1016/j.jmii.2020.09.001
[32]  Johnson, J.R., Magistro, G., Clabots, C., Porter, S., Manges, A., Thuras, P., et al. (2018) Contribution of Yersiniabactin to the Virulence of an Escherichia coli Sequence Type 69 (“Clonal Group A”) Cystitis Isolate in Murine Models of Urinary Tract Infection and Sepsis. Microbial Pathogenesis, 120, 128-131.
https://doi.org/10.1016/j.micpath.2018.04.048

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133