Road construction in Africa is faced with a shortage of quality materials, leading to delays and increased costs. Traditional materials, such as clay soils of the bar soil type, have inadequate properties for pavement sub-base layers, particularly in terms of bearing capacity. This study explores a composite material combining bar soil and bamboo fibers to improve the mechanical performance of bar soil, offering a sustainable and cost-effective solution. The Tori-Bossito bar soil was characterised by particle size analysis, Atterberg limits, Proctor compaction tests and the California Bearing Ratio (CBR). The results show that this material is a class A2 sandy-clay soil with a CBR of 18, which is insufficient for foundation layers requiring a CBR of over 30. To improve its performance, Sèmè-Kpodji bamboo fibers, 30 to 100 microns in diameter and 3 to 5 cm long, were incorporated at rates of 0.9% to 2.7%. The optimum mix, with 2.4% fiber, has a CBR of 35, a dry density of 1.92 t/m3 and a moisture content of 12.4%. This reinforced material is suitable as a base course for low-traffic roadways.
Association canadienne de la construction. Association canadienne de la construc-tion. https://www.cca-acc.com/fr/
[3]
Abessolo, D., Didier, F. and Biwolé, A. (2021) Valorisation des matériaux locaux: Étude de l’effet des fibres de bambou sur les propriétés des Blocs de Terre Comprimée utilisés dans la construction.
[4]
Christine, D.A., Séraphin, D.A., Olivier, B.M. and Edjikémé, E. (2018) Effet de l’addition de fibres de coco traitées à la potasse sur les propriétés mécaniques des matériaux de construction à base d’argile-ciment. EuropeanScientificJournalESJ, 14, 104. https://doi.org/10.19044/esj.2018.v14n36p104
[5]
Faruk, O., Bledzki, A.K., Fink, H. and Sain, M. (2012) Biocomposites Reinforced with Natural Fibers: 2000-2010. ProgressinPolymerScience, 37, 1552-1596. https://doi.org/10.1016/j.progpolymsci.2012.04.003
[6]
Abessolo, D., Biwolé, A., Didier, F., Morino, B., Ganou Koungang, B.M. and Yebga, B. (2020) Effets de la longueur et de la teneur des fibres de bambou sur les propriétés physi-comécaniques et hygroscopiques des Blocs de Terre Comprimée (BTC) utilisés dans la construction. AfriqueScienceRevueInternationaledesSciencesetTechnologie, 16, 13-22.
[7]
Adagbe, M.T. (2021) Utilisation de la terre renforcée par des tiges de paille de riz comme matériau des éléments porteurs des bâtiments armés avec le rônier.
[8]
Dessalegn, Y., Singh, B., Vuure, A.W.v., Badruddin, I.A., Beri, H., Hussien, M., et al. (2022) Investigation of Bamboo Fibrous Tensile Strength Using Modified Weibull Distribution. Materials, 15, Article No. 5016. https://doi.org/10.3390/ma15145016
[9]
Kumar, T. (2018) Libre acc è s Enquête sur l’inclusion aléatoire de fibres de bambou sur un sol ordinaire et son effet sur la valeur CBR.
[10]
Chéïssou, B., Tamou, K., Crespin, J.M., Yabi, P. and Edjrossè, G. (2023) Utilisation d additifs à base de produits forestiers non ligneux pour la stabilisation écologique de la terre crue: Cas de la noix de Parkia Biglobosa et de Vitellaria Paradoxa.
[11]
Marandi, S.M., Bagheripou, M.H., Rahgozar, R. and Zare, H. (2008) Strength and Ductility of Randomly Distributed Palm Fibers Reinforced Silty-Sand Soils. American Journal of Applied Sciences, 5, 209-220. https://doi.org/10.3844/ajassp.2008.209.220
[12]
Quenum, S.P., Kiki, Y.S.T., Agbelele, J.K., Yabi, C.P. and Adjovi, E.C. (2023) Influence of Some Plant Fibers on the Mechanical Performance of Composite Materials. OpenJournalofCivilEngineering, 13, 814-826. https://doi.org/10.4236/ojce.2023.134053
[13]
Zornberg, J.G. and Roodi, G.H. (2021) Use of Geosynthetics to Mitigate Problems Associated with Expansive Clay Subgrades. GeosyntheticsInternational, 28, 279-302. https://doi.org/10.1680/jgein.20.00043
[14]
Nkotto, L.I.N., Kamgang, G.D., Tiewa, J., Kanda, J.S. and Loweh, S.S. (2020) Caractérisation des blocs produits par addition des fibres de coco et des matériaux de construction à base de latériteciment.
[15]
Jahandari, S., Saberian, M., Zivari, F., Li, J., Ghasemi, M. and Vali, R. (2017) Experimental Study of the Effects of Curing Time on Geotechnical Properties of Stabilized Clay with Lime and Geogrid. InternationalJournalofGeotechnicalEngineering, 13, 172-183. https://doi.org/10.1080/19386362.2017.1329259
[16]
Omrani, H., Hassini, L., Benazzouk, A., Beji, H. and ELCafsi, A. (2020) Elaboration and Characterization of Clay-Sand Composite Based on Juncus Acutus Fibers. ConstructionandBuildingMaterials, 238, Article ID: 117712. https://doi.org/10.1016/j.conbuildmat.2019.117712
[17]
Laverde, V., Marin, A., Benjumea, J.M. and Rincón Ortiz, M. (2022) Use of Vegetable Fibers as Reinforcements in Cement-Matrix Composite Materials: A Review. ConstructionandBuildingMaterials, 340, Article ID: 127729. https://doi.org/10.1016/j.conbuildmat.2022.127729
[18]
Sujatha, E.R., SaiSree, S., Prabalini, C. and Aysha Farsana, Z. (2017) Influence of Random Inclusion of Coconut Fibres on the Short-Term Strength of Highly Compressible Clay. IOPConferenceSeries: EarthandEnvironmentalScience, 80, Article ID: 012056. https://doi.org/10.1088/1755-1315/80/1/012056
[19]
Abdelouahed, A., Kechkar, C., Hebhoub, H., Merzoud, M. and Boukhatem, G. (2023) Enhancing the Performance and Durability of Eco-Friendly Mortar with Diss Fibers (Ampelodesmos mauritanicus). Revuedescompositesetdesmatériauxavancés, 33, 219-226. https://doi.org/10.18280/rcma.330402
[20]
Joshi, S. and Patel, S. (2021) Review on Mechanical and Thermal Properties of Pineapple Leaf Fiber (PALF) Reinforced Composite. JournalofNaturalFibers, 19, 10157-10178. https://doi.org/10.1080/15440478.2021.1993487
[21]
Souck, J.L., Tchotang, T. and Kenmeugne, B. (2022) Influence of the Age of Bamboo Culm and Its Vertical Position on the Technological Properties of Bamboo Fibers: A Case of Bambusa vulgaris Species from Cameroonian Culture. OpenJournalofCompositeMaterials, 12, 98-110. https://doi.org/10.4236/ojcm.2022.123008
[22]
Liang, S.X. (2012) Etude de comportement en fatigue des composites renforcés par fibres végétales: Prise en compte de la variabilité des propriétés. https://www.researchgate.net/publication/278643415_Etude_de_comportement_en_fa-tigue_des_composites_renforces_par_fibres_vegetales_prise_en_compte_de_la_variabilite_des_proprietes
[23]
Ambekar, A.M., et al. (2023) Effect of Seawater Absorption on Mechanical and Flexural Properties of Pineapple Leaf Fiber Reinforced Epoxy Nanoclay Composites. ESMaterials&Manufacturing, 22, 1067. https://www.espublisher.com/journals/articledetails/1067
[24]
Nyior, G.B. and Mgbeahuru, E.C. (2018) Effects of Processing Methods on Mechanical Properties of Alkali Treated Bagasse Fibre Reinforced Epoxy Composite. Journal of Minerals and Materials Characterization and Engineering, 6, 345-355. https://www.scirp.org/pdf/JMMCE_2018051015020484.pdf
[25]
Modjonda, Souaibou, Etienne, Y. and Raidandi, D. (2023) Thermal and Mechanical Characterization of Compressed Clay Bricks Reinforced by Rice Husks for Optimizing Building in Sahelian Zone. Advances in Materials Physics and Chemistry, 13, 177-196. https://www.scirp.org/pdf/ampc_2023103016285824.pdf
[26]
Kaho, S.P., et al. (2020) Development of a Composite Material Based on Wood Waste Stabilized with Recycled Expanded Polystyrene. Open Journal of Composite Materials, 10, 66-76. https://www.scirp.org/pdf/ojcm_2020072914134260.pdf
[27]
Adagbe, M.T. (2021) Utilisation de la terre renforcée par des tiges de paille de riz comme matériau des éléments porteurs des bâtiments armés avec le rônier. https://theses.hal.science/tel-03551654v1/document
[28]
Perrier, A. (2017) Influence du vieillissement hydrique suer le comportement mécanique de l’interface fil/matrice dans les composites chanvre/époxy.