全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effects of Nano-Coating, Nanocomposites, Biocomposites to Develop UV Protective Knit Fabrics: A Synergistic Review

DOI: 10.4236/ojcm.2025.151001, PP. 1-30

Keywords: Knitted Fabrics, Biocomposites, Nanocomposites, UV-Protection, Antibacterial Property

Full-Text   Cite this paper   Add to My Lib

Abstract:

Nanotechnology is transforming the textile industry by embedding UV-blocking and antimicrobial agents into fabric fibres at the molecular level. This study explores the development of biocomposites and nanocomposite materials for UV protection and microbial resistance in clothing. Nanoscale UV-blocking agents enhance the protection of textiles against harmful ultraviolet radiation. Recent studies on composites such as ZnO/carboxymethyl chitosan, polyacrylonitrile with UV absorbers and TiO2 nanoparticles, and lignin-TiO composites have shown significant improvements in UV protection and some antibacterial activity. Techniques such as electrospinning, hydrothermal synthesis, and natural fibre welding were used to create these composites, focusing on ZnO and TiO2 nanoparticles for dual functionality. Research on nanoscale UV-blocking agents could revolutionise sun protection in clothing and offer better safety against ultraviolet radiation. Multifunctional composites with UV-blocking and antibacterial properties could advance the use of protective clothing in various industries and outdoor activities. Emphasising natural fibres and sustainable materials aligns with the global trend towards eco-friendly solutions, leading to more environmentally friendly products. This literature review aims to comprehensively review and analyze current research on UV protective knit fabrics using nanotechnology, nanocomposites, and biocomposites. It seeks to identify research gaps, evaluate different approaches, and provide insights for future developments in this field.

References

[1]  Ikeoka, S., Nakahara, T., Iwahashi, H. and Mizushina, Y. (2016) The Establishment of an Assay to Measure DNA Polymerase-Catalyzed Repair of UVB-Induced DNA Damage in Skin Cells and Screening of DNA Polymerase Enhancers from Medicinal Plants. International Journal of Molecular Sciences, 17, Article No. 667.
https://doi.org/10.3390/ijms17050667
[2]  Sultana, N. (2021) Predicting Sun Protection Measures against Skin Diseases Using Machine Learning Approaches. Journal of Cosmetic Dermatology, 21, 758-769.
https://doi.org/10.1111/jocd.14120
[3]  Čuden, A.P. and Urbas, R. (2023) Advances in Ultraviolet (UV) Ray Blocking Textiles. In: Maity, S., Singha, K. and Pandit, P., Eds., Functional and Technical Textiles, Elsevier, 213-273.
https://doi.org/10.1016/b978-0-323-91593-9.00013-4
[4]  Gambichler, T., Dissel, M., Altmeyer, P. and Rotterdam, S. (2010) Evaluation of Sun Awareness with an Emphasis on Ultraviolet Protection by Clothing: A Survey of Adults in Western Germany. Journal of the European Academy of Dermatology and Venereology, 24, 155-162.
https://doi.org/10.1111/j.1468-3083.2009.03368.x
[5]  Farouk, A., Textor, T., Schollmeyer, E., Tarbuk, A. and Grancacic, A.M. (2010) Sol-Gel-Derived Inorganic-Organic Hybrid Polymers Filled with ZnO Nanoparticles as an Ultraviolet Protection Finish for Textiles. AUTEX Research Journal, 10, 58-63.
https://doi.org/10.1515/aut-2010-100301
[6]  Ibrahim, N.A., Gouda, M., Husseiny, S.M., El‐Gamal, A.R. and Mahrous, F. (2009) UV‐Protecting and Antibacterial Finishing of Cotton Knits. Journal of Applied Polymer Science, 112, 3589-3596.
https://doi.org/10.1002/app.29669
[7]  Kan, C., Yam, L. and Ng, S. (2013) Effect of Stretching on Ultraviolet Protection of Cotton and Cotton/Coolmax Blended Weft Knitted Fabric in a Wet State. Materials, 7, 58-74.
https://doi.org/10.3390/ma7010058
[8]  Chong, H.S., Kan, C., Lam, J.K., Ng, S., Hu, H. and Yuen, C.M. (2013) Study on the Relationship between UV Protection and Knitted Fabric Structure. Journal of Textile Engineering, 59, 71-74.
https://doi.org/10.4188/jte.59.71
[9]  Wong, W., Lam, J.K., Kan, C. and Postle, R. (2012) Influence of Knitted Fabric Construction on the Ultraviolet Protection Factor of Greige and Bleached Cotton Fabrics. Textile Research Journal, 83, 683-699.
https://doi.org/10.1177/0040517512467078
[10]  Kan, C.W. and Au, C.H. (2014) Effect of Biopolishing and UV Absorber Treatment on the UV Protection Properties of Cotton Knitted Fabrics. Carbohydrate Polymers, 101, 451-456.
https://doi.org/10.1016/j.carbpol.2013.09.044
[11]  Kan, C.W. (2014) A Study on Ultraviolet Protection of 100% Cotton Knitted Fabric: Effect of Fabric Parameters. The Scientific World Journal, 2014, Article ID: 506049.
https://doi.org/10.1155/2014/506049
[12]  Kan, C.W. (2014) Relationship between Bursting Strength and Ultraviolet Protection Property of 100% Cotton-Knitted Fabrics. The Journal of The Textile Institute, 106, 978-985.
https://doi.org/10.1080/00405000.2014.958287
[13]  Kan, C. and Au, C. (2015) In-Vitro Analysis of the Effect of Constructional Parameters and Dye Class on the UV Protection Property of Cotton Knitted Fabrics. PLOS ONE, 10, e0133416.
https://doi.org/10.1371/journal.pone.0133416
[14]  Kan, C. and Au, C. (2015) Effect of Direct Dyes on the UV Protection Property of 100% Cotton Knitted Fabric. Fibers and Polymers, 16, 1262-1268.
https://doi.org/10.1007/s12221-015-1262-8
[15]  Wong, W., Lam, J.K., Kan, C. and Postle, R. (2016) Impacts of Yarn Twist and Staple Length on UV Protection of Plain-Knitted Cotton Fabrics. The Journal of The Textile Institute, 107, 1533-1542.
https://doi.org/10.1080/00405000.2015.1128733
[16]  Louris, E., Sfiroera, E., Priniotakis, G., Makris, R., Siemos, H., Efthymiou, C., et al. (2018) Evaluating the Ultraviolet Protection Factor (UPF) of Various Knit Fabric Structures. IOP Conference Series: Materials Science and Engineering, 459, Article ID: 012051.
https://doi.org/10.1088/1757-899x/459/1/012051
[17]  Kamal, M.S., Mahmoud, E., Hassabo, A. and Eid, M.M. (2020) Effect of Some Construction Factors of Bi-Layer Knitted Fabrics Produced for Sports Wear on Resisting Ultraviolet Radiation. Egyptian Journal of Chemistry, 63, 4369-4378.
[18]  Sfameni, S., Hadhri, M., Rando, G., Drommi, D., Rosace, G., Trovato, V., et al. (2023) Inorganic Finishing for Textile Fabrics: Recent Advances in Wear-Resistant, UV Protection and Antimicrobial Treatments. Inorganics, 11, Article No. 19.
https://doi.org/10.3390/inorganics11010019
[19]  Kocić, A., Bizjak, M., Popović, D., Poparić, G.B. and Stanković, S.B. (2019) UV Protection Afforded by Textile Fabrics Made of Natural and Regenerated Cellulose Fibres. Journal of Cleaner Production, 228, 1229-1237.
https://doi.org/10.1016/j.jclepro.2019.04.355
[20]  Wong, W.Y., Lam, J.K.C., Kan, C.W. and Postle, R. (2014) In Vitro Assessment of Ultraviolet Protection of Coloured Cotton Knitted Fabrics with Different Structures under Stretched and Wet Conditions. Radiation Protection Dosimetry, 164, 325-334.
https://doi.org/10.1093/rpd/ncu276
[21]  Ghosh, D., Kapri, S. and Bhattacharyya, S. (2016) Phenomenal Ultraviolet Photoresponsivity and Detectivity of Graphene Dots Immobilized on Zinc Oxide Nanorods. ACS Applied Materials & Interfaces, 8, 35496-35504.
https://doi.org/10.1021/acsami.6b13037
[22]  Parvinzadeh Gashti, M., Pakdel, E. and Alimohammadi, F. (2016) Nanotechnology-based Coating Techniques for Smart Textiles. In: Hu, J.L., Ed., Active Coatings for Smart Textiles, Elsevier, 243-268.
https://doi.org/10.1016/b978-0-08-100263-6.00011-3
[23]  Ghosh, D., Shukla, A.K. and Roy, H. (2014) Nano Structured Plasma Spray Coating for Wear and High Temperature Corrosion Resistance Applications. Journal of the Institution of Engineers (India): Series D, 95, 57-64.
https://doi.org/10.1007/s40033-014-0034-8
[24]  Nkele, A.C. and Ezema, F.I. (2020) Diverse Synthesis and Characterization Techniques of Nanoparticles. IntechOpen.
[25]  Álvarez-Chimal, R., Arenas-Alatorre, J.Á. and Álvarez-Pérez, M.A. (2024) Nanoparticle-Polymer Composite Scaffolds for Bone Tissue Engineering. a Review. European Polymer Journal, 213, Article ID: 113093.
https://doi.org/10.1016/j.eurpolymj.2024.113093
[26]  Megha, K.B., Joseph, X. and Mohanan, P.V. (2023) Green Synthesis of Nontoxic Nanoparticles. In: Mohanan, P.V. and Kappalli, S., Eds., Biomedical Applications and Toxicity of Nanomaterials, Springer Nature, 319-338.
https://doi.org/10.1007/978-981-19-7834-0_13
[27]  Chihai (Pețu), R., Săracu, A.F. and Ungureanu, C.V. (2022) Green Synthesis of Metal Nanoparticles Using Microalgae: A Review. Annals of the University Dunarea de Jos of Galati: Fascicle IX, Metallurgy & Materials Science, 45, 16-19.
[28]  Khan, F., Shariq, M., Asif, M., Siddiqui, M.A., Malan, P. and Ahmad, F. (2022) Green Nanotechnology: Plant-Mediated Nanoparticle Synthesis and Application. Nanomaterials, 12, Article No. 673.
https://doi.org/10.3390/nano12040673
[29]  Goswami, R., Bhattacharyya, A. and Dutta, P. (2020) Nanotechnological Approach for Management of Anthracnose and Crown Rot Diseases of Banana. Journal of Mycology and Plant Pathology, 50, 335-346.
[30]  Agarwala, R.C. and Sharma, R. (2008) Electroless Ni‐P Nano Coating Technology. Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry, 38, 229-236.
[31]  Bao, N., Liu, Y., Li, Z.-., Yu, H., Bai, H., Xia, L., et al. (2016) Construction of Order Mesoporous (Eu-La)/ZnO Composite Material and Its Luminescent Characters. Journal of Luminescence, 177, 409-415.
https://doi.org/10.1016/j.jlumin.2016.05.025
[32]  Hasnidawani, J.N., Azlina, H.N., Norita, H. and Bonnia, N.N. (2018) Hardness and Adhesion Performances of Nanocoating on Carbon Steel. IOP Conference Series: Materials Science and Engineering, 290, Article ID: 012078.
https://doi.org/10.1088/1757-899x/290/1/012078
[33]  Nhiem, L.T., Oanh, D.T.Y. and Hieu, N.H. (2023) Nanocoating toward Anti‐Corrosion: A Review. Vietnam Journal of Chemistry, 61, 284-293.
https://doi.org/10.1002/vjch.202300025
[34]  Dutta, M.M. and Goswami, M. (2021) Coating Materials: Nano-Materials. In: Roy, S. and Bose, G.K., Eds., Advanced Surface Coating Techniques for Modern Industrial Applications, IGI Global, 1-30.
https://doi.org/10.4018/978-1-7998-4870-7.ch001
[35]  Kamle, M., Gogoi, P., Mahato, D.K., Gupta, A. and Kumar, P. (2023) Food Preservation by Coating Technology: Nanotechnology Approach. In: Kumar, S., et al., Eds., Emerging Technologies in Food Preservation, CRC Press, 331-348.
https://doi.org/10.1201/9781003147978-12
[36]  Krahne, R., Manna, L., Morello, G., Figuerola, A., George, C. and Deka, S. (2013) Physical Properties of Nanorods. Springer, 217.
[37]  Cui, Q., Sha, Y., Chen, J. and Gu, Z. (2011) Galvanic Synthesis of Hollow Non-Precious Metal Nanoparticles Using Aluminum Nanoparticle Template and Their Catalytic Applications. Journal of Nanoparticle Research, 13, 4785-4794.
https://doi.org/10.1007/s11051-011-0451-7
[38]  Misra, M., Srivastava, A.K., Kadam, A.N., Salunkhe, T.T., Kumar, V. and Nikalje, A.P.G. (2024) Substantial Enhancement of Optoelectronics and Piezoelectric Properties of Novel Hollow ZnO Nanorods towards Efficient Flexible Touch and Bending Sensor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 685, Article ID: 133232.
https://doi.org/10.1016/j.colsurfa.2024.133232
[39]  Yazdi, S., Daniel, J.R., Large, N., Schatz, G.C., Boudreau, D. and Ringe, E. (2016) Reversible Shape and Plasmon Tuning in Hollow Agau Nanorods. Nano Letters, 16, 6939-6945.
https://doi.org/10.1021/acs.nanolett.6b02946
[40]  Ma, D. and Kell, A. (2009) Hollow, Branched and Multifunctional Nanoparticles: Synthesis, Properties and Applications. International Journal of Nanoscience, 8, 483-514.
https://doi.org/10.1142/s0219581x09006419
[41]  Saleh, T.A. (2020) Nanomaterials: Classification, Properties, and Environmental Toxicities. Environmental Technology & Innovation, 20, Article ID: 101067.
https://doi.org/10.1016/j.eti.2020.101067
[42]  Sasipriya, K., Gobi, N., Palanivelu, R., Ramachandran, T.V. and Rajendran, V. (2009) Influence of Nano Silica Coating on the Functional Properties of Cotton Fabrics. Advanced Materials Research, 67, 149-154.
https://doi.org/10.4028/www.scientific.net/amr.67.149
[43]  Gavrilenko, E.A., Goncharova, D.A., Lapin, I.N., Nemoykina, A.L., Svetlichnyi, V.A., Aljulaih, A.A., et al. (2019) Comparative Study of Physicochemical and Antibacterial Properties of ZnO Nanoparticles Prepared by Laser Ablation of Zn Target in Water and Air. Materials, 12, Article No. 186.
https://doi.org/10.3390/ma12010186
[44]  Chen, L., Chen, C., Liang, K., Chang, S.H., Tseng, Z., Yeh, S., et al. (2016) Nano-structured Cuo-Cu2O Complex Thin Film for Application in CH3NH3PbI3 Perovskite Solar Cells. Nanoscale Research Letters, 11, Article No. 402.
https://doi.org/10.1186/s11671-016-1621-4
[45]  Chen, K., Zhou, S. and Wu, L. (2015) Self-Healing Underwater Superoleophobic and Antibiofouling Coatings Based on the Assembly of Hierarchical Microgel Spheres. ACS Nano, 10, 1386-1394.
https://doi.org/10.1021/acsnano.5b06816
[46]  Attia, A.A.A., Altohamy, A.A., Abd Rabbo, M.F. and Sakr, R.Y. (2016) Comparative Study on Al2O3 Nanoparticle Addition on Cool Storage System Performance. Applied Thermal Engineering, 94, 449-457.
https://doi.org/10.1016/j.applthermaleng.2015.10.142
[47]  Sánchez, P., Sánchez-Fernandez, M.V., Romero, A., Rodríguez, J.F. and Sánchez-Silva, L. (2010) Development of Thermo-Regulating Textiles Using Paraffin Wax Microcapsules. Thermochimica Acta, 498, 16-21.
https://doi.org/10.1016/j.tca.2009.09.005
[48]  Lin, J., Chen, H., Fei, T. and Zhang, J. (2013) Highly Transparent Superhydrophobic Organic-Inorganic Nanocoating from the Aggregation of Silica Nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 421, 51-62.
https://doi.org/10.1016/j.colsurfa.2012.12.049
[49]  Araújo, J.C., Ferreira, D.P., Teixeira, P. and Fangueiro, R. (2020) In-Situ Synthesis of Cao and SiO2 Nanoparticles onto Jute Fabrics: Exploring the Multifunctionality. Cellulose, 28, 1123-1138.
https://doi.org/10.1007/s10570-020-03564-1
[50]  Mousa, M. and Khairy, M. (2020) Synthesis of Nano-Zinc Oxide with Different Morphologies and Its Application on Fabrics for UV Protection and Microbe-Resistant Defense Clothing. Textile Research Journal, 90, 2492-2503.
https://doi.org/10.1177/0040517520920952
[51]  Sahile, K., Alemayehu, E., Worku, A., Prabhu, S.V. and Lennartz, B. (2023) Fabrication of Enhanced UV Protective Cotton Fabric Using Activated Nano-Biocarbon Derived from Teff Hay Grafted by Polyaniline: RSM-Based Optimization and Characterization. Molecules, 28, Article No. 5142.
https://doi.org/10.3390/molecules28135142
[52]  Rabiei, H., Farhang Dehghan, S., Montazer, M., Khaloo, S.S. and Koozekonan, A.G. (2022) UV Protection Properties of Workwear Fabrics Coated with TiO2 Nanoparticles. Frontiers in Public Health, 10, Article ID: 929095.
https://doi.org/10.3389/fpubh.2022.929095
[53]  Hammiche, D. (2022) Bio Fillers for Biocomposites. In: Thomas, S. and Jose, S., Eds., Wool Fiber Reinforced Polymer Composites, Elsevier, 121-140.
https://doi.org/10.1016/b978-0-12-824056-4.00009-1
[54]  Verney, V., Gaudin, S., Commereuc, S., Askanian, H., Delor-Jestin, F., Govin, A. and Guyonnet, R. (2014) Lifetime Durability of Bio-Based Composites.
[55]  Hoque, M.E., Chuan, Y.L. and Meng, P.M. (2021) Agro-Based Green Biocomposites for Packaging Applications. In: Saba, N., et al., Eds., Biopolymers and Biocomposites from Agro-Waste for Packaging Applications, Elsevier, 235-254.
https://doi.org/10.1016/b978-0-12-819953-4.00008-2
[56]  Mohanty, A.K., Misra, M. and Drzal, L.T. (2001) Surface Modifications of Natural Fibers and Performance of the Resulting Biocomposites: An Overview. Composite Interfaces, 8, 313-343.
https://doi.org/10.1163/156855401753255422
[57]  Akter, M., Uddin, M.H. and Tania, I.S. (2022) Biocomposites Based on Natural Fibers and Polymers: A Review on Properties and Potential Applications. Journal of Reinforced Plastics and Composites, 41, 705-742.
https://doi.org/10.1177/07316844211070609
[58]  AbdElhady, M.M. (2012) Preparation and Characterization of Chitosan/Zinc Oxide Nanoparticles for Imparting Antimicrobial and UV Protection to Cotton Fabric. International Journal of Carbohydrate Chemistry, 2012, Article ID: 840591.
https://doi.org/10.1155/2012/840591
[59]  El-Shafei, A., ElShemy, M. and Abou-Okeil, A. (2015) Eco-Friendly Finishing Agent for Cotton Fabrics to Improve Flame Retardant and Antibacterial Properties. Carbohydrate Polymers, 118, 83-90.
https://doi.org/10.1016/j.carbpol.2014.11.007
[60]  Lazăr, S., Dobrotă, D., Breaz, R. and Racz, S. (2023) Eco-Design of Polymer Matrix Composite Parts: A Review. Polymers, 15, Article No. 3634.
https://doi.org/10.3390/polym15173634
[61]  Sheng, J., Ding, S., Liao, H., Yao, Y., Zhai, Y., Zhan, J., et al. (2023) Polyacrylonitrile/UV329/Titanium Oxide Composite Nanofibrous Membranes with Enhanced UV Protection and Filtration Performance. RSC Advances, 13, 17622-17627.
https://doi.org/10.1039/d3ra02470a
[62]  Sacco, N., Iguini, A., Gamba, I., Marchesini, F.A. and García, G. (2024) Pd:In-Doped TiO2 as a Bifunctional Catalyst for the Photoelectrochemical Oxidation of Paracetamol and Simultaneous Green Hydrogen Production. Molecules, 29, Article No. 1073.
https://doi.org/10.3390/molecules29051073
[63]  Ramos-Delgado, N.A., Gracia-Pinilla, M.Á., Mangalaraja, R.V., O’Shea, K. and Dionysiou, D.D. (2016) Industrial Synthesis and Characterization of Nanophotocatalysts Materials: Titania. Nanotechnology Reviews, 5, 467-479.
https://doi.org/10.1515/ntrev-2016-0007
[64]  Lin, B., Li, T., Zhao, Y., Huang, F., Guo, L. and Feng, Y. (2008) Preparation of a TiO2 Nanoparticle-Deposited Capillary Column by Liquid Phase Deposition and Its Application in Phosphopeptide Analysis. Journal of Chromatography A, 1192, 95-102.
https://doi.org/10.1016/j.chroma.2008.03.043
[65]  Jaafar, J., Siregar, J.P., Tezara, C., Hamdan, M.H.M. and Rihayat, T. (2019) A Review of Important Considerations in the Compression Molding Process of Short Natural Fiber Composites. The International Journal of Advanced Manufacturing Technology, 105, 3437-3450.
https://doi.org/10.1007/s00170-019-04466-8
[66]  Dhakal, H.N. and Andrew, J.J. (2021) Mechanical Properties of Carbon Nanotube-polymer Composites. In: Abraham, J., Thomas, S. and Kalarikkal, N., Eds., Handbook of Carbon Nanotubes, Springer International Publishing, 1-22.
https://doi.org/10.1007/978-3-319-70614-6_16-1
[67]  Faruk, O., Bledzki, A.K., Fink, H. and Sain, M. (2012) Biocomposites Reinforced with Natural Fibers: 2000-2010. Progress in Polymer Science, 37, 1552-1596.
https://doi.org/10.1016/j.progpolymsci.2012.04.003
[68]  Chowdhury, R.A., Sadri, A.M. and Hoque, M.E. (2021) Industrial Implementations of Biocomposites. In: Hoque, M.E., et al., Eds., Green Biocomposites for Biomedical Engineering, Elsevier, 391-408.
https://doi.org/10.1016/b978-0-12-821553-1.00020-x
[69]  Pandey, J.K., Nagarajan, V., Mohanty, A.K. and Misra, M. (2015) Commercial Potential and Competitiveness of Natural Fiber Composites. In: Misra, M., et al., Eds., Biocomposites, Elsevier, 1-15.
https://doi.org/10.1016/b978-1-78242-373-7.00001-9
[70]  Siakeng, R., Jawaid, M., Asim, M., Fouad, H., Awad, S., Saba, N., et al. (2021) Flexural and Dynamic Mechanical Properties of Alkali-Treated Coir/Pineapple Leaf Fibres Reinforced Polylactic Acid Hybrid Biocomposites. Journal of Bionic Engineering, 18, 1430-1438.
https://doi.org/10.1007/s42235-021-00086-9
[71]  Kaur, G., Sharma, S., Mir, S.A. and Dar, B.N. (2021) Nanobiocomposite Films: A “Greener Alternate” for Food Packaging. Food and Bioprocess Technology, 14, 1013-1027.
https://doi.org/10.1007/s11947-021-02634-x
[72]  Behnam Hosseini, S. (2020) Natural Fiber Polymer Nanocomposites. In: Han, B.G., et al., Eds., Fiber-Reinforced Nanocomposites: Fundamentals and Applications, Elsevier, 279-299.
https://doi.org/10.1016/b978-0-12-819904-6.00013-x
[73]  Zhao, M., Zhang, H. and Li, Z. (2022) A Bibliometric and Visual Analysis of Nanocomposite Hydrogels Based on VOSviewer from 2010 to 2022. Frontiers in Bioengineering and Biotechnology, 10, Article ID: 914253.
https://doi.org/10.3389/fbioe.2022.914253
[74]  Gashawtena, E., Kidane, A. and Sirahbizu, B. (2024) Fabrication and Characterization of Natural Fiber-Polymer Composites for Prosthesis Socket Application. Journal of Natural Fibers, 21, Article ID: 2354399.
https://doi.org/10.1080/15440478.2024.2354399
[75]  Saba, N., Jawaid, M. and Asim, M. (2019) Nanocomposites with Nanofibers and Fillers from Renewable Resources. In: Koronis, G. and Silva, A., Eds., Green Composites for Automotive Applications, Elsevier, 145-170.
[76]  Guo, D., Zhang, J., Sha, L., Liu, B., Zhang, X., Zhang, X., et al. (2020) Preparation and Characterization of Lignin-TiO2 Uv-Shielding Composite Material by Induced Synthesis with Nanofibrillated Cellulose. BioResources, 15, 7374-7389.
https://doi.org/10.15376/biores.15.4.7374-7389
[77]  Yang, Y., Liu, Y., Song, L., Cui, X., Zhou, J., Jin, G., et al. (2023) Iron Oxide Nanoparticle-Based Nanocomposites in Biomedical Application. Trends in Biotechnology, 41, 1471-1487.
https://doi.org/10.1016/j.tibtech.2023.06.001
[78]  Yang, D., Ramu, A.G. and Choi, D. (2022) Synthesis of Transparent Zno-TiO2 and Its Nanocomposites for Ultraviolet Protection of a Polyethylene Terephthalate (PET) Film. Catalysts, 12, Article No. 1590.
https://doi.org/10.3390/catal12121590
[79]  Faggian, V., Scanferla, P., Paulussen, S. and Zuin, S. (2014) Combining the European Chemicals Regulation and an (Eco)toxicological Screening for a Safer Membrane Development. Journal of Cleaner Production, 83, 404-412.
https://doi.org/10.1016/j.jclepro.2014.07.017
[80]  Oklu, N.K., Matsinha, L.C. and Makhubela, B.C. (2020) Bio-Solvents: Synthesis, Industrial Production and Applications. In: Glossman-Mitnik, D. and Maciejewska, M., Eds., Solvents, Ionic Liquids and Solvent Effects, IntechOpen, 1-24.
[81]  Irede, E.L., Awoyemi, R.F., Owolabi, B., Aworinde, O.R., Kajola, R.O., Hazeez, A., et al. (2024) Cutting-Edge Developments in Zinc Oxide Nanoparticles: Synthesis and Applications for Enhanced Antimicrobial and UV Protection in Healthcare Solutions. RSC Advances, 14, 20992-21034.
https://doi.org/10.1039/d4ra02452d
[82]  Gulbrandson, A.J., Larm, N.E., Stachurski, C.D., Trulove, P.C. and Durkin, D.P. (2023) Mesoporous Cellulose-TiO2 Nanoparticle Composite Textile for “Excellent” UV Protection. ACS Applied Engineering Materials, 1, 3053-3061.
https://doi.org/10.1021/acsaenm.3c00511
[83]  George, J., Sabapathi, S.N. and Siddaramaiah, (2017) Water Soluble Polymer Based Hybrid Nanocomposites. In: Thakur, V.K., et al., Eds., Hybrid Polymer Composite Materials, Elsevier, 71-88.
https://doi.org/10.1016/b978-0-08-100789-1.00003-4
[84]  George, J. and S N, S. (2015) Cellulose Nanocrystals: Synthesis, Functional Properties, and Applications. Nanotechnology, Science and Applications, 8, 45-54.
https://doi.org/10.2147/nsa.s64386

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133