|
分析231种饮食摄入与性早熟之间的因果关系——一项双样本孟德尔随机化研究
|
Abstract:
目的:本文旨在将混杂因素的影响控制在最小的前提下,探讨特定的饮食摄入与性早熟(PP)发病的关系。方法:使用来自芬兰数据库(FinnGen)和英国生物样本库(UKB)的大规模全基因组关联研究(GWAS)汇总统计数据来探讨性早熟与231种饮食摄入之间的潜在关联。然后进行两样本孟德尔随机化(TSMR)分析,以进一步评估性早熟与饮食摄入之间的因果关系。结果:5种饮食摄入表现出正相关,即盐渍花生的摄入(ukb-b-1099) (OR = 1480.226, 95% CI = (14.460~151528.425), p = 0.002)、其他咸口小吃的摄入(ukb-b-18718) (OR = 326.312, 95% CI = (2.452~43431.149), p = 0.020)、西梅的摄入(ukb-b-3022) (OR = 1174.199, 95% CI = (6.603~208798.930), p = 0.007)、标准茶摄入量(ukb-b-3291) (OR = 1.011, 95% CI = (1.000~1.022), p = 0.040)及酒精摄入的频率(ukb-b-5799) (OR = 3.332, 95% CI = (1.491~7.448), p = 0.003);其余4种表现出负相关,即白鱼的摄入(ukb-b-5427) (OR = 0.004, 95% CI = (0.000~0.259), p = 0.010)、牛奶布丁的摄入(ukb-b-9857) (OR = 0.002, 95% CI = (0.000~0.297), p = 0.015)、煎饼的摄入(ukb-b-6500) (OR = 0.014, 95% CI = (0.000~0.808), p = 0.039)、平均每周摄入烈酒(ukb-b-1707) (OR = 0.039, 95% CI = (0.002~0.624), p = 0.022);此外,我们还发现性早熟与标准茶摄入量(ukb-b-3291) (OR = 0.402, 95% CI = (0.169~0.957), p = 0.04)、白鱼的摄入(ukb-b-5427) (OR = 0.998, 95% CI = (0.995~1.000), p = 0.038)存在反向因果关系。敏感性分析结果显示孟德尔随机化分析结果可靠。结论:盐渍花生、其他的咸口小吃、西梅、茶的摄入及酒精的摄入频率对性早熟存在致病效应;白鱼、牛奶布丁、煎饼的摄入及平均每周摄入烈酒与性早熟的延缓有关;患有性早熟可能会引起茶和白鱼的摄入量增加或减少。我们的研究结果为理解性早熟的发病机制提供了新的线索,重点关注会引起性早熟的饮食摄入,从而提供详细的饮食指导及干预,以期降低性早熟的发病率及年轻化趋势。
Objective: This study aims to investigate the relationship between specific dietary intakes and the onset of precocious puberty (PP) while minimizing the influence of confounding factors. Methods: Summary statistics from large-scale Genome-Wide Association Studies (GWAS) from the Finnish database (FinnGen) and the UK Biobank (UKB) were utilized to explore potential associations between precocious puberty and 231 types of dietary intakes. Two-sampled Mendelian Randomization (TSMR) analysis was subsequently conducted to further assess the causal relationship between precocious puberty and dietary intakes. Results: Five dietary intakes showed positive correlations: intake of salted peanuts (ukb-b-1099) (OR = 1480.226, 95% CI = (14.460~151528.425), p = 0.002), intake of other salty snacks (ukb-b-18718) (OR = 326.312, 95% CI = (2.452~43431.149), p = 0.020), intake of prunes (ukb-b-3022) (OR = 1174.199, 95% CI = (6.603~208798.930), p = 0.007), standard tea intake (ukb-b-3291) (OR = 1.011, 95% CI = (1.000~1.022), p = 0.040), and frequency of alcohol intake (ukb-b-5799) (OR = 3.332, 95% CI = (1.491~7.448), p = 0.003). The remaining four showed negative correlations: intake of white fish (ukb-b-5427) (OR = 0.004, 95% CI = (0.000~0.259), p = 0.010), intake of milk pudding (ukb-b-9857) (OR =
[1] | Cheuiche, A.V., da Silveira, L.G., de Paula, L.C.P., Lucena, I.R.S. and Silveiro, S.P. (2021) Diagnosis and Management of Precocious Sexual Maturation: An Updated Review. European Journal of Pediatrics, 180, 3073-3087. https://doi.org/10.1007/s00431-021-04022-1 |
[2] | Knobil, E. (1980) The Neuroendocrine Control of the Menstrual Cycle. Recent Progress in Hormone Research, 36, 53-88. https://doi.org/10.1016/b978-0-12-571136-4.50008-5 |
[3] | Latronico, A.C., Brito, V.N. and Carel, J. (2016) Causes, Diagnosis, and Treatment of Central Precocious Puberty. The Lancet Diabetes & Endocrinology, 4, 265-274. https://doi.org/10.1016/s2213-8587(15)00380-0 |
[4] | Cantas-Orsdemir, S. and Eugster, E.A. (2019) Update on Central Precocious Puberty: From Etiologies to Outcomes. Expert Review of Endocrinology & Metabolism, 14, 123-130. https://doi.org/10.1080/17446651.2019.1575726 |
[5] | Teilmann, G., Pedersen, C.B., Jensen, T.K., Skakkebæk, N.E. and Juul, A. (2005) Prevalence and Incidence of Precocious Pubertal Development in Denmark: An Epidemiologic Study Based on National Registries. Pediatrics, 116, 1323-1328. https://doi.org/10.1542/peds.2005-0012 |
[6] | Kim, S.H., Huh, K., Won, S., Lee, K. and Park, M. (2015) A Significant Increase in the Incidence of Central Precocious Puberty among Korean Girls from 2004 to 2010. PLOS ONE, 10, e0141844. https://doi.org/10.1371/journal.pone.0141844 |
[7] | Soriano-Guillén, L., Corripio, R., Labarta, J.I., Cañete, R., Castro-Feijóo, L., Espino, R., et al. (2010) Central Precocious Puberty in Children Living in Spain: Incidence, Prevalence, and Influence of Adoption and Immigration. The Journal of Clinical Endocrinology & Metabolism, 95, 4305-4313. https://doi.org/10.1210/jc.2010-1025 |
[8] | Tenedero, C.B., Oei, K. and Palmert, M.R. (2021) An Approach to the Evaluation and Management of the Obese Child with Early Puberty. Journal of the Endocrine Society, 6, bvab173. https://doi.org/10.1210/jendso/bvab173 |
[9] | Sultan, C., Gaspari, L., Kalfa, N. and Paris, F. (2012) Clinical Expression of Precocious Puberty in Girls. In: Sultan, C., Ed., Endocrine Development, S. Karger AG, 84-100. https://doi.org/10.1159/000334304 |
[10] | Eckert-Lind, C., Busch, A.S., Petersen, J.H., Biro, F.M., Butler, G., Bräuner, E.V., et al. (2020) Worldwide Secular Trends in Age at Pubertal Onset Assessed by Breast Development among Girls: A Systematic Review and Meta-Analysis. JAMA Pediatrics, 174, e195881. https://doi.org/10.1001/jamapediatrics.2019.5881 |
[11] | Biro, F.M., Galvez, M.P., Greenspan, L.C., Succop, P.A., Vangeepuram, N., Pinney, S.M., et al. (2010) Pubertal Assessment Method and Baseline Characteristics in a Mixed Longitudinal Study of Girls. Pediatrics, 126, e583-e590. https://doi.org/10.1542/peds.2009-3079 |
[12] | Karlberg, J. (2002) Secular Trends in Pubertal Development. Hormone Research in Paediatrics, 57, 19-30. https://doi.org/10.1159/000058096 |
[13] | Davey Smith, G. and Hemani, G. (2014) Mendelian Randomization: Genetic Anchors for Causal Inference in Epidemiological Studies. Human Molecular Genetics, 23, R89-R98. https://doi.org/10.1093/hmg/ddu328 |
[14] | Emdin, C.A., Khera, A.V. and Kathiresan, S. (2017) Mendelian Randomization. JAMA, 318, 1925-1926. https://doi.org/10.1001/jama.2017.17219 |
[15] | Song, M., Fung, T.T., Hu, F.B., Willett, W.C., Longo, V.D., Chan, A.T., et al. (2016) Association of Animal and Plant Protein Intake with All-Cause and Cause-Specific Mortality. JAMA Internal Medicine, 176, 1453-1463. https://doi.org/10.1001/jamainternmed.2016.4182 |
[16] | Lawrence, M.A. and Baker, P.I. (2019) Ultra-processed Food and Adverse Health Outcomes. BMJ, 365, L2289. https://doi.org/10.1136/bmj.l2289 |
[17] | Asfaw, A. (2011) Does Consumption of Processed Foods Explain Disparities in the Body Weight of Individuals? The Case of Guatemala. Health Economics, 20, 184-195. https://doi.org/10.1002/hec.1579 |
[18] | Monteiro, C.A., Cannon, G., Levy, R.B., Moubarac, J., Louzada, M.L., Rauber, F., et al. (2019) Ultra-Processed Foods: What They Are and How to Identify Them. Public Health Nutrition, 22, 936-941. https://doi.org/10.1017/s1368980018003762 |
[19] | Hall, K.D., Ayuketah, A., Brychta, R., Cai, H., Cassimatis, T., Chen, K.Y., et al. (2019) Ultra-Processed Diets Cause Excess Calorie Intake and Weight Gain: An Inpatient Randomized Controlled Trial of Ad Libitum Food Intake. Cell Metabolism, 30, 67-77.e3. https://doi.org/10.1016/j.cmet.2019.05.008 |
[20] | Liu, M., Cao, B., Luo, Q., Wang, Q., Liu, M., Liang, X., et al. (2022) The Critical BMI Hypothesis for Puberty Initiation and the Gender Prevalence Difference: Evidence from an Epidemiological Survey in Beijing, China. Frontiers in Endocrinology, 13, Article 1009133. https://doi.org/10.3389/fendo.2022.1009133 |
[21] | Rosenfield, R.L., Lipton, R.B. and Drum, M.L. (2009) Thelarche, Pubarche, and Menarche Attainment in Children with Normal and Elevated Body Mass Index. Pediatrics, 123, 84-88. https://doi.org/10.1542/peds.2008-0146 |
[22] | Lee, S.Y., Kim, J.M., Kim, Y.M. and Lim, H.H. (2021) Single Random Measurement of Urinary Gonadotropin Concentration for Screening and Monitoring Girls with Central Precocious Puberty. Annals of Pediatric Endocrinology & Metabolism, 26, 178-184. https://doi.org/10.6065/apem.2040208.104 |
[23] | Calcaterra, V., Magenes, V.C., Hruby, C., Siccardo, F., Mari, A., Cordaro, E., et al. (2023) Links between Childhood Obesity, High-Fat Diet, and Central Precocious Puberty. Children, 10, Article 241. https://doi.org/10.3390/children10020241 |
[24] | Bhattacharya, S. and nee Paul, S.M. (2021) Phytoestrogens Responsible for Altered Pubertal Timing in Females: A Matter of Concern. Proceedings of the Zoological Society, 74, 558-571. https://doi.org/10.1007/s12595-021-00398-y |
[25] | Hertog, M.G.L., Feskens, E.J.M., Hollman, P.C.H., Katan, M.B. and Kromhout, D. (1994) Dietary Flavonoids and Cancer Risk in the Zutphen Elderly Study. Nutrition and Cancer, 22, 175-184. https://doi.org/10.1080/01635589409514342 |
[26] | Patisaul, H.B. (2013) Effects of Environmental Endocrine Disruptors and Phytoestrogens on the Kisspeptin System. In: Kauffman, A. and Smith, J., Eds, Kisspeptin Signaling in Reproductive Biology, Springer, 455-479. https://doi.org/10.1007/978-1-4614-6199-9_21 |
[27] | Kim, J., Kim, S., Huh, K., Kim, Y., Joung, H. and Park, M. (2011) High Serum Isoflavone Concentrations Are Associated with the Risk of Precocious Puberty in Korean Girls. Clinical Endocrinology, 75, 831-835. https://doi.org/10.1111/j.1365-2265.2011.04127.x |
[28] | Marks, K.J., Hartman, T.J., Taylor, E.V., Rybak, M.E., Northstone, K. and Marcus, M. (2017) Exposure to Phytoestrogens in Utero and Age at Menarche in a Contemporary British Cohort. Environmental Research, 155, 287-293. https://doi.org/10.1016/j.envres.2017.02.030 |
[29] | Cheng, G., Remer, T., Prinz-Langenohl, R., Blaszkewicz, M., Degen, G.H. and Buyken, A.E. (2010) Relation of Isoflavones and Fiber Intake in Childhood to the Timing of Puberty. The American Journal of Clinical Nutrition, 92, 556-564. https://doi.org/10.3945/ajcn.2010.29394 |
[30] | Tinwell, H., Colombel, S., Blanck, O. and Bars, R. (2013) The Screening of Everyday Life Chemicals in Validated Assays Targeting the Pituitary-Gonadal Axis. Regulatory Toxicology and Pharmacology, 66, 184-196. https://doi.org/10.1016/j.yrtph.2013.04.002 |
[31] | Wedick, N.M., Mantzoros, C.S., Ding, E.L., Brennan, A.M., Rosner, B., Rimm, E.B., et al. (2012) The Effects of Caffeinated and Decaffeinated Coffee on Sex Hormone-Binding Globulin and Endogenous Sex Hormone Levels: A Randomized Controlled Trial. Nutrition Journal, 11, Article No. 86. https://doi.org/10.1186/1475-2891-11-86 |
[32] | Ezzat, A.R. and El-Gohary, Z.M. (1994) Hormonal and Histological Effects of Chronic Caffeine Administration on the Pituitary-Gonadal and Pituitary-Adrenocortical Axes in Male Rabbits. Functional and Developmental Morphology, 4, 45-50. |
[33] | Park, M., Choi, Y., Choi, H., Yim, J. and Roh, J. (2015) High Doses of Caffeine during the Peripubertal Period in the Rat Impair the Growth and Function of the Testis. International Journal of Endocrinology, 2015, Article ID: 368475. https://doi.org/10.1155/2015/368475 |
[34] | Xie, L., Tang, Q., Yao, D., Gu, Q., Zheng, H., Wang, X., et al. (2021) Effect of Decaffeinated Green Tea Polyphenols on Body Fat and Precocious Puberty in Obese Girls: A Randomized Controlled Trial. Frontiers in Endocrinology, 12, Article ID: 736724. https://doi.org/10.3389/fendo.2021.736724 |
[35] | Gu, Q., Wang, X., Xie, L., Yao, X., Qian, L., Yu, Z., et al. (2022) Green Tea Catechin EGCG Could Prevent Obesity-Related Precocious Puberty through NKB/NK3R Signaling Pathway. The Journal of Nutritional Biochemistry, 108, Article ID: 109085. https://doi.org/10.1016/j.jnutbio.2022.109085 |
[36] | Brix, N., Lauridsen, L.L.B., Ernst, A., Olsen, J., Henriksen, T.B. and Ramlau-Hansen, C.H. (2020) Alcohol Intake during Pregnancy and Timing of Puberty in Sons and Daughters: A Nationwide Cohort Study. Reproductive Toxicology, 91, 35-42. https://doi.org/10.1016/j.reprotox.2019.11.003 |
[37] | Peck, J.D., Peck, B.M., Skaggs, V.J., Fukushima, M. and Kaplan, H.B. (2011) Socio-Environmental Factors Associated with Pubertal Development in Female Adolescents: The Role of Prepubertal Tobacco and Alcohol Use. Journal of Adolescent Health, 48, 241-246. https://doi.org/10.1016/j.jadohealth.2010.06.018 |
[38] | Hiney, J.K., Srivastava, V.K. and Les Dees, W. (2010) Insulin-like Growth Factor-1 Stimulation of Hypothalamic Kiss-1 Gene Expression Is Mediated by Akt: Effect of Alcohol. Neuroscience, 166, 625-632. https://doi.org/10.1016/j.neuroscience.2009.12.030 |
[39] | Dees, W.L., Hiney, J.K. and Srivastava, V.K. (2017) Alcohol and Puberty: Mechanisms of Delayed Development. Alcohol Research: Current Reviews, 38, 277-282. |
[40] | Srivastava, V.K., Hiney, J.K., Stevener, K. and Dees, W.L. (2015) Differential Effects of Alcohol on Excitatory and Inhibitory Puberty‐Related Peptides in the Basal Hypothalamus of the Female Rat. Alcoholism: Clinical and Experimental Research, 39, 2386-2393. https://doi.org/10.1111/acer.12905 |
[41] | Jansen, E.C., Marín, C., Mora-Plazas, M. and Villamor, E. (2016) Higher Childhood Red Meat Intake Frequency Is Associated with Earlier Age at Menarche. The Journal of Nutrition, 146, 792-798. https://doi.org/10.3945/jn.115.226456 |
[42] | Bonafini, S., Antoniazzi, F., Maffeis, C., Minuz, P. and Fava, C. (2015) Beneficial Effects of ω-3 PUFA in Children on Cardiovascular Risk Factors during Childhood and Adolescence. Prostaglandins & Other Lipid Mediators, 120, 72-79. https://doi.org/10.1016/j.prostaglandins.2015.03.006 |
[43] | Perng, W., Villamor, E., Mora-Plazas, M., Marin, C. and Baylin, A. (2014) α-Linolenic Acid (ALA) Is Inversely Related to Development of Adiposity in School-Age Children. European Journal of Clinical Nutrition, 69, 167-172. https://doi.org/10.1038/ejcn.2014.210 |
[44] | Lauritzen, L., Eriksen, S.E., Hjorth, M.F., Nielsen, M.S., Olsen, S.F., Stark, K.D., et al. (2016) Maternal Fish Oil Supplementation during Lactation Is Associated with Reduced Height at 13 Years of Age and Higher Blood Pressure in Boys Only. British Journal of Nutrition, 116, 2082-2090. https://doi.org/10.1017/s0007114516004293 |
[45] | Santillán, M.E., Vincenti, L.M., Martini, A.C., Fiol de Cuneo, M., Ruiz, R.D., Mangeaud, A., et al. (2010) Developmental and Neurobehavioral Effects of Perinatal Exposure to Diets with Different Ω-6:ω-3 Ratios in Mice. Nutrition, 26, 423-431. https://doi.org/10.1016/j.nut.2009.06.005 |
[46] | Vázquez, C., Botella-Carretero, J.I., Corella, D., Fiol, M., Lage, M., Lurbe, E., et al. (2014) White Fish Reduces Cardiovascular Risk Factors in Patients with Metabolic Syndrome: The WISH-CARE Study, a Multicenter Randomized Clinical Trial. Nutrition, Metabolism and Cardiovascular Diseases, 24, 328-335. https://doi.org/10.1016/j.numecd.2013.09.018 |
[47] | Dror, D.K. (2014) Dairy Consumption and Pre‐School, School‐Age and Adolescent Obesity in Developed Countries: A Systematic Review and Meta‐Analysis. Obesity Reviews, 15, 516-527. https://doi.org/10.1111/obr.12158 |
[48] | Wiley, A.S. (2011) Milk Intake and Total Dairy Consumption: Associations with Early Menarche in NHANES 1999-2004. PLOS ONE, 6, e14685. https://doi.org/10.1371/journal.pone.0014685 |
[49] | Ramezani Tehrani, F., Moslehi, N., Asghari, G., Gholami, R., Mirmiran, P. and Azizi, F. (2013) Intake of Dairy Products, Calcium, Magnesium, and Phosphorus in Childhood and Age at Menarche in the Tehran Lipid and Glucose Study. PLOS ONE, 8, e57696. https://doi.org/10.1371/journal.pone.0057696 |
[50] | Carwile, J.L., Willett, W.C., Wang, M., Rich-Edwards, J., Frazier, A.L. and Michels, K.B. (2015) Milk Consumption after Age 9 Years Does Not Predict Age at Menarche. The Journal of Nutrition, 145, 1900-1908. https://doi.org/10.3945/jn.115.214270 |
[51] | Papanikolaou, Y., Jones, J.M. and Fulgoni, V.L. (2017) Several Grain Dietary Patterns Are Associated with Better Diet Quality and Improved Shortfall Nutrient Intakes in US Children and Adolescents: A Study Focusing on the 2015-2020 Dietary Guidelines for Americans. Nutrition Journal, 16, Article No. 13. https://doi.org/10.1186/s12937-017-0230-0 |
[52] | Kissock, K.R., Neale, E.P. and Beck, E.J. (2021) Whole Grain Food Definition Effects on Determining Associations of Whole Grain Intake and Body Weight Changes: A Systematic Review. Advances in Nutrition, 12, 693-707. https://doi.org/10.1093/advances/nmaa122 |