全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

融合知识图谱与图注意力的电子商务推荐算法
E-Commerce Recommendation Algorithm Integrating Knowledge Graph and Attention

DOI: 10.12677/ecl.2024.1341308, PP. 1567-1577

Keywords: 电子商务,推荐算法,知识图谱,图注意力
E-Commerce
, Recommendation Algorithms, Knowledge Graphs, Graph Attention

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着大数据时代的发展,电子商务进入了新的发展阶段,推荐系统已成为提升用户体验和促进销售的关键技术。本文提出一种融合知识图谱(KG)与图注意力(GAT)的电子商务推荐算法(E-KGAT)。首先,将用户行为数据与商品属性相结合构建协同知识图谱并进行嵌入表示。然后,设计了一个基于注意力机制的嵌入传播层,捕获节点间的相互作用与依赖关系。此外,通过层聚合机制整合各层的节点表示,预测用户对商品的匹配得分,从而完成推荐任务。最后,采用BCE损失函数和Adam优化器优化模型性能,确保模型在训练过程中准确学习用户和商品的嵌入表示。实验结果表明,通过与其他算法结果比较和消融实验结果比较,证明本算法相比典型的推荐算法不仅能更深入理解用户偏好,还能准确捕获商品之间的关系,从而实现更高的准确性和可解释性。
With the development of the big data era, e-commerce has entered a new stage of development, and recommender system has become a key technology to enhance user experience and promote sales. This paper proposes an e-commerce recommendation algorithm (E-KGAT) that integrates knowledge graph (KG) and graph attention (GAT). First, user behavior data and product attributes are combined to construct a collaborative knowledge graph and embedded representation. Then, an embedding propagation layer based on the attention mechanism is designed to capture the interactions and dependencies among nodes. In addition, the node representations of each layer are integrated through the layer aggregation mechanism to predict the user’s matching score for commodities, thus accomplishing the recommendation task. Finally, the binary cross-entropy loss function and Adam optimizer are used to optimize the model performance and ensure that the model accurately learns the embedded representations of users and commodities during training. The experimental results show that by comparing with other algorithms and comparing with the results of ablation experiments, it is proved that the present algorithm not only understands the user preferences more deeply than typical recommendation algorithms, but also accurately captures the complex relationship between commodities, thus realizing higher accuracy and interpretability.

References

[1]  Bandyopadhyay, S., Thakur, S.S. and Mandal, J.K. (2020) Product Recommendation for E-Commerce Business by Applying Principal Component Analysis (PCA) and K-Means Clustering: Benefit for the Society. Innovations in Systems and Software Engineering, 17, 45-52.
https://doi.org/10.1007/s11334-020-00372-5
[2]  Donghyun, K., Chanyoung, P., Jinoh, O., et al. (2016) Convolutional Matrix Factorization for Document Context-Aware Recommendation. Proceedings of the 10th ACM Conference on Recommender Systems, Boston, 15-19 September 2016, 233-240.
[3]  Zhang, S., Yao, L.N., Sun, A.X., et al. (2017) Deep Learning Based Recommender System: A Survey and New Perspectives. ACM Computing Surveys, 52, Article No. 5.
https://doi.org/10.1145/3285029
[4]  Lops, P., Jannach, D., Musto, C., Bogers, T. and Koolen, M. (2019) Trends in Content-Based Recommendation: Preface to the Special Issue on Recommender Systems Based on Rich Item Descriptions. User Modeling and User-Adapted Interaction, 29, 239-249.
https://doi.org/10.1007/s11257-019-09231-w
[5]  Krötzsch, M., Marx, M., Ozaki, A. and Thost, V. (2018) Attributed Description Logics: Reasoning on Knowledge Graphs. Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, Stockholm, 13-19 July 2018, 5309-5313.
https://doi.org/10.24963/ijcai.2018/743
[6]  Rendle, S. (2010) Factorization Machines. 2010 IEEE International Conference on Data Mining, Sydney, 13-17 December 2010, 995-1000.
https://doi.org/10.1109/icdm.2010.127
[7]  Guo, H., TANG, R., Ye, Y., Li, Z. and He, X. (2017) DeepFM: A Factorization-Machine Based Neural Network for CTR Prediction. Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, Melbourne, 19-25 August 2017, 1725-1731.
https://doi.org/10.24963/ijcai.2017/239
[8]  Lian, J., Zhou, X., Zhang, F., Chen, Z., Xie, X. and Sun, G. (2018) xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, 19-23 August 2018, 1754-1763.
https://doi.org/10.1145/3219819.3220023
[9]  Song, W., Shi, C., Xiao, Z., Duan, Z., Xu, Y., Zhang, M., et al. (2019) AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks. Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, 3-7 November 2019, 1161-1170.
https://doi.org/10.1145/3357384.3357925
[10]  Kipf, T.N. and Welling, M. (2016) Semi-Supervised Classification with Graph Convolutional Networks. arXiv: 1609.02907.
https://doi.org/10.48550/arXiv.1609.02907
[11]  Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.L. and Leskovec, J. (2018) Graph Convolutional Neural Networks for Web-Scale Recommender Systems. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, 19-23 August 2018, 974-983.
https://doi.org/10.1145/3219819.3219890
[12]  Chen, L., Wu, L., Hong, R., Zhang, K. and Wang, M. (2020) Revisiting Graph Based Collaborative Filtering: A Linear Residual Graph Convolutional Network Approach. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 27-34.
https://doi.org/10.1609/aaai.v34i01.5330
[13]  Veličković, P., Cucurull, G., Casanova, A., et al. (2017) Graph Attention Networks. arXiv:1710.10903.
https://doi.org/10.48550/arXiv.1710.10903
[14]  Wang, J., Shi, Y., Cheng, L., Zhang, K. and Chen, Z. (2022) GRE: A GAT-Based Relation Embedding Model of Knowledge Graph for Recommendation. Computer Supported Cooperative Work and Social Computing, Xiangtan, 26-28 November 2021, 77-91.
https://doi.org/10.1007/978-981-19-4549-6_7
[15]  Huang, J., Zhao, W.X., Dou, H., Wen, J. and Chang, E.Y. (2018) Improving Sequential Recommendation with Knowledge-Enhanced Memory Networks. The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, Ann Arbor, 8-12 July 2018, 505-514.
https://doi.org/10.1145/3209978.3210017
[16]  Wang, H., Zhang, F., Wang, J., Zhao, M., Li, W., Xie, X., et al. (2018) RippleNet: Propagating User Preferences on the Knowledge Graph for Recommender Systems. Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Torino, 22-26 October 2018, 417-426.
https://doi.org/10.1145/3269206.3271739
[17]  Wang, X., He, X., Cao, Y., Liu, M. and Chua, T. (2019) KGAT: Knowledge Graph Attention Network for Recommendation. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, 4-8 August 2019, 950-958.
https://doi.org/10.1145/3292500.3330989
[18]  Chen, J., Zhang, H., He, X., Nie, L., Liu, W. and Chua, T. (2017) Attentive Collaborative Filtering. Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Tokyo, 7-11 August 2017, 335-344.
https://doi.org/10.1145/3077136.3080797
[19]  Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., et al. (2017) Attention Is All You Need. Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, 4-9 December 2017, 6000-6010.
[20]  Qiu, J., Tang, J., Ma, H., Dong, Y., Wang, K. and Tang, J. (2018) DeepInf: Social Influence Prediction with Deep Learning. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, 19-23 August 2018, 2110-2119.
https://doi.org/10.1145/3219819.3220077
[21]  Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.-I. and Jegelka, S. (2018) Representation Learning on Graphs with Jumping Knowledge Networks. Proceedings of Machine Learning Research, 80, 5453-5462.
[22]  Zhao, W.X., He, G., Yang, K., Dou, H., Huang, J., Ouyang, S., et al. (2019) KB4Rec: A Data Set for Linking Knowledge Bases with Recommender Systems. Data Intelligence, 1, 121-136.
https://doi.org/10.1162/dint_a_00008
[23]  Xiao, J., Ye, H., He, X., Zhang, H., Wu, F. and Chua, T. (2017) Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks. Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, Melbourne, 19-25 August 2017, 3119-3125.
https://doi.org/10.24963/ijcai.2017/435
[24]  Zhang, F., Yuan, N.J., Lian, D., Xie, X. and Ma, W. (2016) Collaborative Knowledge Base Embedding for Recommender Systems. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, 13-17 August 2016, 353-362.
https://doi.org/10.1145/2939672.2939673

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133