全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Stiffness of In-Situ Formed Interleaving Polymeric Nanofiber-Epoxy Nanocomposites

DOI: 10.4236/ojcm.2024.144011, PP. 147-157

Keywords: Lamination Theory, Resin Film Infusion, Electrospun Nanofibers, Mechanical Properties

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study proposes a facile, but precise method to back-calculate the effective modulus of nanocomposite interleaving plies. Adaptation of a conventional dry-reinforcement resin film infusion (RFI) approach allows interleaving neat epoxy layers (NE) with the epoxy-infused nanofibrous plies (XE) of constant thickness. The final cured nanocomposite laminate thus has the form (NE/XE)n, where “n” denotes the number of the repeats and enables clear distinction of the nanocomposite interlayers through the thickness. Mechanical testing of neat epoxy and laminated nanocomposite specimens can be coupled with the classical lamination theory for back-calculating in-plane elastic modulus of the individual epoxy-infused nanofibrous plies (EXE). Finite element analysis (FEA) and testing the laminated nanocomposite subject to flexural loading (3-point bending) are proposed to validate the analytically back-calculated EXE. It is shown that the FEA prediction incorporating EXE and testing for flexural modulus of (NE/XE)20 laminated nanocomposites correlate well and the results are within 5%. This finding suggests that the back-calculation scheme reported herein would be attractive for accurately determining the properties of an individual nanocomposite building block layer. The proposed framework is beneficial for modelling laminated structural composites incorporating XE-like nanocomposite interlayers.

References

[1]  Palazzetti, R. and Zucchelli, A. (2017) Electrospun Nanofibers as Reinforcement for Composite Laminates Materials—A Review. Composite Structures, 182, 711-727.
https://doi.org/10.1016/j.compstruct.2017.09.021
[2]  Mahato, B., Lomov, S.V., Shiverskii, A., Owais, M. and Abaimov, S.G. (2023) A Review of Electrospun Nanofiber Interleaves for Interlaminar Toughening of Composite Laminates. Polymers, 15, Article 1380.
https://doi.org/10.3390/polym15061380
[3]  Bilge, K. and Papila, M. (2015) Interlayer Toughening Mechanisms of Composite Materials. In: Qin, Q. and Ye, J., Eds., Toughening Mechanisms in Composite Materials, Woodhead Publishing, 263-294.
https://doi.org/10.1016/b978-1-78242-279-2.00010-x
[4]  Quan, D., Alderliesten, R., Dransfeld, C., Murphy, N., Ivanković, A. and Benedictus, R. (2020) Enhancing the Fracture Toughness of Carbon Fibre/Epoxy Composites by Interleaving Hybrid Meltable/Non-Meltable Thermoplastic Veils. Composite Structures, 252, Article 112699.
https://doi.org/10.1016/j.compstruct.2020.112699
[5]  Quan, D., Murphy, N., Ivanković, A., Zhao, G. and Alderliesten, R. (2022) Fatigue Delamination Behaviour of Carbon Fibre/Epoxy Composites Interleaved with Thermoplastic Veils. Composite Structures, 281, Article 114903.
https://doi.org/10.1016/j.compstruct.2021.114903
[6]  Quan, D., Bologna, F., Scarselli, G., Ivankovic, A. and Murphy, N. (2020) Interlaminar Fracture Toughness of Aerospace-Grade Carbon Fibre Reinforced Plastics Interleaved with Thermoplastic Veils. Composites Part A: Applied Science and Manufacturing, 128, Article 105642.
https://doi.org/10.1016/j.compositesa.2019.105642
[7]  Beylergil, B., Tanoğlu, M. and Aktaş, E. (2018) Effect of Polyamide-6,6 (PA 66) Nonwoven Veils on the Mechanical Performance of Carbon Fiber/Epoxy Composites. Composite Structures, 194, 21-35.
https://doi.org/10.1016/j.compstruct.2018.03.097
[8]  Bilge, K., Venkataraman, S., Menceloglu, Y.Z. and Papila, M. (2014) Global and Local Nanofibrous Interlayer Toughened Composites for Higher in-Plane Strength. Composites Part A: Applied Science and Manufacturing, 58, 73-76.
https://doi.org/10.1016/j.compositesa.2013.12.001
[9]  Bilge, K., Ozden-Yenigun, E., Simsek, E., Menceloglu, Y.Z. and Papila, M. (2012) Structural Composites Hybridized with Epoxy Compatible Polymer/MWCNT Nanofibrous Interlayers. Composites Science and Technology, 72, 1639-1645.
https://doi.org/10.1016/j.compscitech.2012.07.005
[10]  Zucchelli, A., Focarete, M.L., Gualandi, C. and Ramakrishna, S. (2010) Electrospun Nanofibers for Enhancing Structural Performance of Composite Materials. Polymers for Advanced Technologies, 22, 339-349.
https://doi.org/10.1002/pat.1837
[11]  Asghari Arpatappeh, F., Manga, E., Bilge, K., Aydemir, B.E., Gülgün, M.A. and Papila, M. (2022) Morphology Evolution of Self-Same Nanocomposites Hybridized with Jumbo-Sized Particles. Journal of Applied Polymer Science, 139, e53073.
https://doi.org/10.1002/app.53073
[12]  Bilge, K., Yorulmaz, Y., Javanshour, F., Ürkmez, A., Yılmaz, B., Şimşek, E., et al. (2017) Synergistic Role of in-situ Crosslinkable Electrospun Nanofiber/Epoxy Nanocomposite Interlayers for Superior Laminated Composites. Composites Science and Technology, 151, 310-316.
https://doi.org/10.1016/j.compscitech.2017.08.029
[13]  Sasidharan, S. and Anand, A. (2022) Interleaving in Composites for High-Performance Structural Applications. Industrial & Engineering Chemistry Research, 62, 16-39.
https://doi.org/10.1021/acs.iecr.2c03061
[14]  Ahmadloo, E., Gharehaghaji, A., Latifi, M., Saghafi, H. and Mohammadi, N. (2018) Effect of PA66 Nanofiber Yarn on Tensile Fracture Toughness of Reinforced Epoxy Nanocomposite. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233, 2033-2043.
https://doi.org/10.1177/0954406218781910
[15]  Daelemans, L., van der Heijden, S., De Baere, I., Rahier, H., Van Paepegem, W. and De Clerck, K. (2016) Damage-Resistant Composites Using Electrospun Nanofibers: A Multiscale Analysis of the Toughening Mechanisms. ACS Applied Materials & Interfaces, 8, 11806-11818.
https://doi.org/10.1021/acsami.6b02247
[16]  Meireman, T., Daelemans, L., Rijckaert, S., Rahier, H., Van Paepegem, W. and De Clerck, K. (2020) Delamination Resistant Composites by Interleaving Bio-Based Long-Chain Polyamide Nanofibers through Optimal Control of Fiber Diameter and Fiber Morphology. Composites Science and Technology, 193, Article 108126.
https://doi.org/10.1016/j.compscitech.2020.108126

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133