全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Anti-Oxidative Effects of Bioactive Compounds in Spirulina Microalgae and Bilberry

DOI: 10.4236/fns.2024.1510060, PP. 941-958

Keywords: Spirulina, Bilberry, Antioxidant, Functional Foods, Functional Food Ingredients, Total Phenolics, Total Flavonoids

Full-Text   Cite this paper   Add to My Lib

Abstract:

Spirulina and Bilberry are underexplored and underutilized in the food industry. Therefore, this research focuses on determining the antioxidative properties of Spirulina and Bilberry for future use in functional food product development. The objective was to determine the Total Phenolic Content (TPC) and Total Flavonoid Content (TFC) in Spirulina and Bilberry extracts (Aqueous and Ethanol extracts) and their antioxidative potential (2,2-diphenyl-1-picrylhydrazyl (DPPH), Ferric Reducing Antioxidant Potential (FRAP), Trolox Equivalent Antioxidant Capacity (TEAC), and Nitric Oxide Radical Scavenging Ability (NORS)). Spirulina and Bilberry pure and combination samples [100% Spirulina (100S), 100% Bilberry (100B), 50% Spirulina + 50% Bilberry (50S + 50B), 75% Spirulina + 25% Bilberry (75S + 25B), & 25% Spirulina + 75% Bilberry (25S + 75B)], were extracted with aqueous (deionized water) and 80% ethanol solutions. Colorimetric antioxidant assays were used to determine total phenolics, total flavonoids, and their antioxidant potential. 80% ethanol Spirulina and Bilberry (pure and combination) extracts resulted in higher TFC, FRAP, and DPPH, whereas aqueous extracts had higher TPC, NORS, and TEAC, suggesting both hydrophilic and lipophilic bioactive compounds in Spirulina and Bilberry. Spirulina and Bilberry are two potential functional food ingredients for the food industry due to their antioxidative properties.

References

[1]  Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., et al. (2017) Oxidative Stress: Harms and Benefits for Human Health. Oxidative Medicine and Cellular Longevity, 2017, Article ID: 8416763.
https://doi.org/10.1155/2017/8416763
[2]  Sharifi-Rad, M., Anil Kumar, N.V., Zucca, P., Varoni, E.M., Dini, L., Panzarini, E., et al. (2020) Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Frontiers in Physiology, 11, Article 694.
https://doi.org/10.3389/fphys.2020.00694
[3]  Nimse, S.B. and Pal, D. (2015) Free Radicals, Natural Antioxidants, and Their Reaction Mechanisms. RSC Advances, 5, 27986-28006.
https://doi.org/10.1039/c4ra13315c
[4]  Gulcin, İ. (2020) Antioxidants and Antioxidant Methods: An Updated Overview. Archives of Toxicology, 94, 651-715.
https://doi.org/10.1007/s00204-020-02689-3
[5]  Phaniendra, A., Jestadi, D.B. and Periyasamy, L. (2014) Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Indian Journal of Clinical Biochemistry, 30, 11-26.
https://doi.org/10.1007/s12291-014-0446-0
[6]  Essa, M.M., Bishir, M., Bhat, A., Chidambaram, S.B., Al-Balushi, B., Hamdan, H., et al. (2021) Functional Foods and Their Impact on Health. Journal of Food Science and Technology, 60, 820-834.
https://doi.org/10.1007/s13197-021-05193-3
[7]  Kim, J.H., Kim, D.H., Jo, S., Cho, M.J., Cho, Y.R., Lee, Y.J. and Byun, S. (2022) Immunomodulatory Functional Foods and Their Molecular Mechanisms. Experimental & Molecular Medicine, 54, 1-11.
https://www.nature.com/articles/s12276-022-00724-0#:~:text=Chemical%20compounds%20in%20certain%20foods%20have%20been%20shown,cells%2C%20providing%20protection%20against%20cancer%2C%20viruses%2C%20and%20bacteria
[8]  Link, R. (2020) What Are Functional Foods? All You Need to Know. Healthline.
[9]  Amin, M., Ul-Haq, A., Shahid, A., Boopathy, R. and Syafiuddin, A. (2024) Spirulina as a Food of the Future. In: Mehmood, M.A., Verma, P., Shah, M.P. and Betenbaugh, M.J., Eds., Pharmaceutical and Nutraceutical Potential of Cyanobacteria, Springer, 53-83.
https://doi.org/10.1007/978-3-031-45523-0_3
[10]  WebMD (2020) Spirulina: Are There Health Benefits? Diet & Weight Management.
https://www.webmd.com/diet/spirulina-health-benefits
[11]  Sharma, A. and Lee, H. (2022) Anti-Inflammatory Activity of Bilberry (Vaccinium myrtillus L.). Current Issues in Molecular Biology, 44, 4570-4583.
https://doi.org/10.3390/cimb44100313
[12]  Lin, D., Xiao, M., Zhao, J., Li, Z., Xing, B., Li, X., et al. (2016) An Overview of Plant Phenolic Compounds and Their Importance in Human Nutrition and Management of Type 2 Diabetes. Molecules, 21, Article 1374.
https://doi.org/10.3390/molecules21101374
[13]  Gajula, D., Verghese, M., Boateng, J., Walker, L.T., Shackelfor, L., Mentreddy, S.R., et al. (2009) Determination of Total Phenolics, Flavonoids and Antioxidant and Chemopreventive Potential of Basil (Ocimum basilicum L. and Ocimum tenuiflorum L.). International Journal of Cancer Research, 5, 130-143.
https://doi.org/10.3923/ijcr.2009.130.143
[14]  Panche, A.N., Diwan, A.D. and Chandra, S.R. (2016) Flavonoids: An Overview. Journal of Nutritional Science, 5, e47.
https://doi.org/10.1017/jns.2016.41
[15]  Marinova, D., Ribarova, F. and Atanassova, M. (2005) Total Phenolics and Total Flavonoids in Bulgarian Fruits and Vegetables. Journal of the University of Chemical Technology and Metallurgy, 40, 255-260.
[16]  Kedare, S.B. and Singh, R.P. (2011) Genesis and Development of DPPH Method of Antioxidant Assay. Journal of Food Science and Technology, 48, 412-422.
https://doi.org/10.1007/s13197-011-0251-1
[17]  Brand-Williams, W., Cuvelier, M.E. and Berset, C. (1995) Use of a Free Radical Method to Evaluate Antioxidant Activity. LWTFood Science and Technology, 28, 25-30.
https://doi.org/10.1016/s0023-6438(95)80008-5
[18]  Benzie, I.F.F. and Strain, J.J. (1996) The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “antioxidant Power”: The FRAP Assay. Analytical Biochemistry, 239, 70-76.
https://doi.org/10.1006/abio.1996.0292
[19]  Habu, J.B. and Ibeh, B.O. (2015) In Vitro Antioxidant Capacity and Free Radical Scavenging Evaluation of Active Metabolite Constituents of Newbouldia Laevis Ethanolic Leaf Extract. Biological Research, 48, Article No. 16.
https://doi.org/10.1186/s40659-015-0007-x
[20]  Ebrahimzadeh, M.A., Pourmorad, F. and Hafezi, S. (2007) Antioxidant Activities of Iranian Corn Silk. Turkish Journal of Biology, 32, 43-49.
[21]  Arts, M.J.T.J., Sebastiaan Dallinga, J., Voss, H., Haenen, G.R.M.M. and Bast, A. (2004) A New Approach to Assess the Total Antioxidant Capacity Using the TEAC Assay. Food Chemistry, 88, 567-570.
https://doi.org/10.1016/j.foodchem.2004.02.008
[22]  Miller, N.J., Rice-Evans, C., Davies, M.J., Gopinathan, V. and Milner, A. (1993) A Novel Method for Measuring Antioxidant Capacity and Its Application to Monitoring the Antioxidant Status in Premature Neonates. Clinical Science, 84, 407-412.
https://doi.org/10.1042/cs0840407
[23]  Bärlocher, F. and Graça, M.A.S. (2020) Total Phenolics. In: Bärlocher, F., Gessner, M. and Graça, M., Eds., Methods to Study Litter Decomposition, Springer, 157-161.
https://doi.org/10.1007/978-3-030-30515-4_18
[24]  Bibi Sadeer, N., Montesano, D., Albrizio, S., Zengin, G. and Mahomoodally, M.F. (2020) The Versatility of Antioxidant Assays in Food Science and Safety—Chemistry, Applications, Strengths, and Limitations. Antioxidants, 9, Article 709.
https://doi.org/10.3390/antiox9080709
[25]  Agustiar, A.A., Rairat, T., Zeng, M. and Praiboon, J. (2022) Effect of Different Extracting Solvents on Antioxidant Activity and Inhibitory Effect on Diabetic Enzymes of Chlorella Vulgaris and Spirulina Platensis. Journal of Fisheries and Environment, 46, 10-26.
https://www.researchgate.net/publication/367021497_Effect_of_Different_Extracting_Solvents_on_Antioxidant_Activity_andInhibitory_Effect_on_Diabetic_Enzymes_of_Chlorella_vulgaris_andSpirulina_platensis
[26]  Vrancheva, R., Ivanov, I., Badjakov, I., Dincheva, I., Georgiev, V. and Pavlov, A. (2020) Optimization of Polyphenols Extraction Process with Antioxidant Properties from Wild Vaccinium myrtillus L. (Bilberry) and Vaccinium Vitis-Idaea L. (Lingonberry) Leaves. Food Science and Applied Biotechnology, 3, 149-156.
https://doi.org/10.30721/fsab2020.v3.i2.98
[27]  Guldas, M., Ziyanok-Demirtas, S., Sahan, Y., Yildiz, E. and Gurbuz, O. (2021) Antioxidant and Anti-Diabetic Properties of Spirulina Platensis Produced in Türkiye. Food Science and Technology, 41, 615-625.
https://doi.org/10.1590/fst.23920
[28]  Stanoeva, J.P., Stefova, M., Andonovska, K.B., Vankova, A. and Stafilov, T. (2017) Phenolics and Mineral Content in Bilberry and Bog Bilberry from Macedonia. International Journal of Food Properties, 20, S863-S883.
https://doi.org/10.1080/10942912.2017.1315592
[29]  Wen, K., Fang, X., Yang, J., Yao, Y., Nandakumar, K.S., Salem, M.L., et al. (2021) Recent Research on Flavonoids and Their Biomedical Applications. Current Medicinal Chemistry, 28, 1042-1066.
https://doi.org/10.2174/0929867327666200713184138
[30]  Seghiri, R., Kharbach, M. and Essamri, A. (2019) Functional Composition, Nutritional Properties, and Biological Activities of Moroccan Spirulina Microalga. Journal of Food Quality, 2019, Article ID: 3707219.
https://doi.org/10.1155/2019/3707219
[31]  Gheda, S.F., Abo-Shady, A.M., Abdel-Karim, O.H. and Ismail, G.A. (2020) Antioxidant and Antihyperglycemic Activity of Arthrospira Platensis (Spirulina Platensis) Methanolic Extract: In Vitro and in Vivo Study. Egyptian Journal of Botany, 61, 71-93.
https://doi.org/10.21608/ejbo.2020.27436.1482
[32]  Lafarga, T., Fernández-Sevilla, J.M., González-López, C. and Acién-Fernández, F.G. (2020) Spirulina for the Food and Functional Food Industries. Food Research International, 137, Article ID: 109356.
https://doi.org/10.1016/j.foodres.2020.109356
[33]  NCCIH (2020) Bilberry. National Center for Complementary and Integrative Health.
https://www.nccih.nih.gov/health/bilberry

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133