|
E-Commerce Letters 2024
组合模型支持下S省生鲜农产品物流需求预测分析
|
Abstract:
在S省生鲜农产品物流需求预测分析领域,采用组合模型支持下的预测方法显得尤为重要。然而,相关数据存在整合不精确、预测精度不高等问题。基于此,通过主成分分析与多元回归模型的建立,探索数据源的高效整理方法,确保了数据质量与可靠性;利用Shepley值法优化组合预测模型的构造,增强了模型的适应性与准确性;以S省生鲜农产品物流为案例,通过数据来源整理、主成分回归模型的建立及需求预测,以及基于Shepley组合模型的预测,展现模型在实际应用中的有效性与准确性;提出具体建议,旨在通过模型优化与技术应用,提升物流需求预测的准确度,为S省生鲜农产品物流的高效管理与发展提供科学依据。
In the field of fresh agricultural products logistics demand forecasting analysis in Province S, the forecasting method supported by combinatorial modeling is particularly important. However, there are problems such as imprecise integration and low prediction accuracy of related data. Based on this, the efficient collation method of data sources is explored through the establishment of principal component analysis and multiple regression model, which ensures the quality and reliability of the data; the Shepley value method is used to optimize the construction of the combined prediction model, which strengthens the adaptability and accuracy of the model; the fresh agricultural products logistics of S province is taken as a case study, through the collation of data sources, the establishment of the principal component regression model and the demand prediction and the prediction of the fresh agricultural products logistics of S province based on the Shepley combination model, to show the effectiveness and accuracy of the model in practical application and put forward specific recommendations, aiming to improve the accuracy of logistics demand forecasting through model optimization and technology application, to provide scientific basis for the efficient management and development of fresh agricultural products logistics in S Province.
[1] | 于成学, 黄瀚彬, 于济铭. 基于需求预测模型的城市生鲜农产品冷链物流服务预测研究——以佛山市为例[J]. 物流工程与管理, 2023, 45(9): 111-116. |
[2] | 周慧, 曾一洲. 数字化转型背景下九江市生鲜农产品冷链物流需求预测及发展建议[J]. 物流科技, 2023, 46(15): 132-137. |
[3] | 汪芸芳, 史意, 陈丽华. 基于BA-SVR混合模型的果蔬生鲜物流需求预测模型研究[J]. 运筹与管理, 2024, 33(4): 200-205. |
[4] | 黄建华, 张迪. 面向不确定物流需求的改进GM-BPNN组合预测方法[J]. 统计与决策, 2022, 38(16): 26-29. |
[5] | 曹志强, 杨筝, 刘放. 基于遗传算法优化支持向量回归机的区域物流需求预测[J]. 系统科学学报, 2018, 26(4): 79-82+90. |
[6] | 王帆, 于鸣宇, 于佳. 企业物流需求情报分析预测方法与实证研究[J]. 情报科学, 2015, 33(7): 107-112. |