|
JNK/c-Jun信号通路在肾脏疾病发生发展中的调控作用
|
Abstract:
JNK是MAPK超家族成员之一,c-Jun是JNK的主要下游因子,是一种受JNK调控的即早基因。JNK和c-Jun是创伤、应激、细胞凋亡相关的调节因子,参与调控多种疾病的发生发展过程。近年来,研究发现,JNK/c-Jun信号通路在IgA肾病、抗GBM肾小球肾炎、肾纤维化、急性肾损伤等多种肾脏疾病中表现为异常活化,调控着相关肾脏疾病的发生和发展过程。本文就JNK/c-Jun信号通路在肾脏疾病发生发展过程中的调控作用作简要综述。
JNK is one of the members of the MAPK superfamily, and c-Jun is the main downstream factor of JNK, which is an early gene regulated by JNK. JNK and c-Jun are regulators related to trauma, stress and apoptosis, and are involved in regulating the occurrence and development of a variety of diseases. In recent years, studies have found that the JNK/c-Jun signaling pathway is abnormally activated in a variety of kidney diseases, such as IgA nephropathy, anti-GBM glomerulonephritis, renal fibrosis, and acute kidney injury, which regulates the occurrence and development of related kidney diseases. This article briefly reviews the regulatory role of JNK/c-Jun signaling pathway in the occurrence and development of kidney diseases.
[1] | 黎增辉, 廖爱军. JNK信号通路[J]. 国际病理科学与临床志, 2010, 30(3): 273-276. |
[2] | 李莉, 孙颖颖, 白莹, 等. 青藤碱在JNK/c-Jun信号通路中对LPS诱导的肺上皮细胞凋亡和自噬的影响[J]. 中国免疫学杂志, 2024, 40(4): 731-735. |
[3] | 张宇琼, 张雪怡, 徐美琴, 等. JNK/c-Jun信号通路参与介导EB病毒编码的BARF1基因上调胃癌细胞Bcl-2的表达[J]. 江苏大学学报(医学版), 2015, 25(3): 199-202. |
[4] | 程崑, 李涛. JNK通路研究现状[J]. 齐齐哈尔医学院学报, 2014, 35(7): 1038-1041. |
[5] | Hammouda, M., Ford, A., Liu, Y. and Zhang, J. (2020) The JNK Signaling Pathway in Inflammatory Skin Disorders and Cancer. Cells, 9, Article 857. https://doi.org/10.3390/cells9040857 |
[6] | 李艳. miR-214-3p通过PTEN/JNK/c-Jun信号通路参与IgA肾病的发病机制研究[D]: [博士学位论文]. 重庆: 中南大学, 2022. |
[7] | Li, L. and Liu, Z. (2004) Epidemiologic Data of Renal Diseases from a Single Unit in China: Analysis Based on 13,519 Renal Biopsies. Kidney International, 66, 920-923. https://doi.org/10.1111/j.1523-1755.2004.00837.x |
[8] | Wyatt, R.J. and Julian, B.A. (2013) IgA Nephropathy. New England Journal of Medicine, 368, 2402-2414. https://doi.org/10.1056/nejmra1206793 |
[9] | Hu, S., Bao, H., Xu, X., Zhou, X., Qin, W., Zeng, C., et al. (2015) Increased miR‐374b Promotes Cell Proliferation and the Production of Aberrant Glycosylated IgA1 in B Cells of IgA Nephropathy. FEBS Letters, 589, 4019-4025. https://doi.org/10.1016/j.febslet.2015.10.033 |
[10] | Li, C., Shi, J. and Zhao, Y. (2018) miR‐320 Promotes B Cell Proliferation and the Production of Aberrant Glycosylated IgA1 in IgA Nephropathy. Journal of Cellular Biochemistry, 119, 4607-4614. https://doi.org/10.1002/jcb.26628 |
[11] | Yang, L., Zhang, X., Peng, W., Wei, M. and Qin, W. (2016) MicroRNA-155-Induced T Lymphocyte Subgroup Drifting in IgA Nephropathy. International Urology and Nephrology, 49, 353-361. https://doi.org/10.1007/s11255-016-1444-3 |
[12] | Selvaskandan, H., Pawluczyk, I. and Barratt, J. (2017) MicroRNAs: A New Avenue to Understand, Investigate and Treat Immunoglobulin a Nephropathy? Clinical Kidney Journal, 11, 29-37. https://doi.org/10.1093/ckj/sfx096 |
[13] | Nikolic‐Paterson, D.J. and C. Atkins, R. (2001) The Role of Macrophages in Glomerulonephritis. Nephrology Dialysis Transplantation, 16, 3-7. https://doi.org/10.1093/ndt/16.suppl_5.3 |
[14] | Isome, M., Fujinaka, H., Adhikary, L.P., Kovalenko, P., El-Shemi, A.G.A., Yoshida, Y., et al. (2004) Important Role for Macrophages in Induction of Crescentic Anti-GBM Glomerulonephritis in WKY Rats. Nephrology Dialysis Transplantation, 19, 2997-3004. https://doi.org/10.1093/ndt/gfh558 |
[15] | Ikezumi, Y., Hurst, L., Atkins, R.C. and Nikolic-Paterson, D.J. (2004) Macrophage-Mediated Renal Injury Is Dependent on Signaling via the JNK Pathway. Journal of the American Society of Nephrology, 15, 1775-1784. https://doi.org/10.1097/01.asn.0000131272.06958.de |
[16] | Flanc, R.S., Ma, F.Y., Tesch, G.H., Han, Y., Atkins, R.C., Bennett, B.L., et al. (2007) A Pathogenic Role for JNK Signaling in Experimental Anti-GBM Glomerulonephritis. Kidney International, 72, 698-708. https://doi.org/10.1038/sj.ki.5002404 |
[17] | 王海燕. 肾脏病学[M]. 第4版. 北京: 人民卫生出版社, 2020. |
[18] | Abraham, R.T. (2001) Cell Cycle Checkpoint Signaling through the ATM and ATR Kinases. Genes & Development, 15, 2177-2196. https://doi.org/10.1101/gad.914401 |
[19] | Bencokova, Z., Kaufmann, M.R., Pires, I.M., Lecane, P.S., Giaccia, A.J. and Hammond, E.M. (2009) ATM Activation and Signaling under Hypoxic Conditions. Molecular and Cellular Biology, 29, 526-537. https://doi.org/10.1128/mcb.01301-08 |
[20] | Yang, L., Besschetnova, T.Y., Brooks, C.R., Shah, J.V. and Bonventre, J.V. (2010) Epithelial Cell Cycle Arrest in G2/M Mediates Kidney Fibrosis after Injury. Nature Medicine, 16, 535-543. https://doi.org/10.1038/nm.2144 |
[21] | Ma, F.Y., Flanc, R.S., Tesch, G.H., Han, Y., Atkins, R.C., Bennett, B.L., et al. (2007) A Pathogenic Role for c-Jun Amino-Terminal Kinase Signaling in Renal Fibrosis and Tubular Cell Apoptosis. Journal of the American Society of Nephrology, 18, 472-484. https://doi.org/10.1681/asn.2006060604 |
[22] | Ma, F.Y., Liu, J. and Nikolic-Paterson, D.J. (2008) The Role of Stress-Activated Protein Kinase Signaling in Renal Pathophysiology. Brazilian Journal of Medical and Biological Research, 42, 29-37. https://doi.org/10.1590/s0100-879x2008005000049 |
[23] | Chen, Y. (2010) Definition and Classification of Acute Kidney Injury: Contributions and Problems in the Clinical Practice. Chinese Journal of Integrative Medicine, 16, 204-206. https://doi.org/10.1007/s11655-010-0204-2 |
[24] | 王薇, 赛文莉, 杨斌. 巨噬细胞极化及与肾小管上皮细胞互动在缺血再灌注所致急性肾损伤中的作用[J]. 生理学报, 2022, 74(1): 28-38. |
[25] | 吴玲, 吴丽华, 刘昱, 等. 肾动脉缺血再灌注诱导急性肾损伤模型的建立和评价[J]. 中国中西医结合肾病杂志, 2023, 24(11): 961-964, 1036. |
[26] | 路艳, 朴宗方, 李建玲, 等. 舒芬太尼通过上调microRNA-145促进自噬和改善缺血再灌注诱导的急性肾损伤[J]. 中南大学学报(医学版), 2022, 47(10): 1315-1323. |
[27] | Pombo, C.M., Bonventre, J.V., Avruch, J., Woodgett, J.R., Kyriakis, J.M. and Force, T. (1994) The Stress-Activated Protein Kinases Are Major c-Jun Amino-Terminal Kinases Activated by Ischemia and Reperfusion. Journal of Biological Chemistry, 269, 26546-26551. https://doi.org/10.1016/s0021-9258(18)47229-8 |
[28] | Lin, T., Ruan, S., Huang, D., Meng, X., Li, W., Wang, B., et al. (2019) MeHg-Induced Autophagy via JNK/Vps34 Complex Pathway Promotes Autophagosome Accumulation and Neuronal Cell Death. Cell Death & Disease, 10, Article No. 399. https://doi.org/10.1038/s41419-019-1632-z |
[29] | Ugbode, C., Garnham, N., Fort-Aznar, L., Evans, G.J.O., Chawla, S. and Sweeney, S.T. (2020) JNK Signalling Regulates Antioxidant Responses in Neurons. Redox Biology, 37, Article 101712. https://doi.org/10.1016/j.redox.2020.101712 |
[30] | Wu, Q., Wu, W., Fu, B., Shi, L., Wang, X. and Kuca, K. (2019) JNK Signaling in Cancer Cell Survival. Medicinal Research Reviews, 39, 2082-2104. https://doi.org/10.1002/med.21574 |
[31] | Shan, R., Yu, J., Zhang, S., Xie, M., Hou, R., Xie, C., et al. (2024) Madecassoside Alleviates Acute Kidney Injury by Regulating JNK-Mediated Oxidative Stress and Programmed Cell Death. Phytomedicine, 123, Article ID: 155252. https://doi.org/10.1016/j.phymed.2023.155252 |
[32] | Rongshan, L., Tao, D., Xiaocheng, L. and Caixia, L. (2006) Influence of SB203580 on Cell Apoptosis and P38MAPK in Renal Ischemia/Reperfusion Injury. Journal of Huazhong University of Science and Technology [Medical Sciences], 26, 50-52. https://doi.org/10.1007/bf02828037 |
[33] | Wang, Y., Ji, H., Xing, S., Pei, D. and Guan, Q. (2007) SP600125, a Selective JNK Inhibitor, Protects Ischemic Renal Injury via Suppressing the Extrinsic Pathways of Apoptosis. Life Sciences, 80, 2067-2075. https://doi.org/10.1016/j.lfs.2007.03.010 |
[34] | Ramesh, G. and Reeves, W.B. (2005) P38 MAP Kinase Inhibition Ameliorates Cisplatin Nephrotoxicity in Mice. American Journal of Physiology-Renal Physiology, 289, F166-F174. https://doi.org/10.1152/ajprenal.00401.2004 |
[35] | Francescato, H.D.C., Costa, R.S., Junior, F.B. and Coimbra, T.M. (2007) Effect of JNK Inhibition on Cisplatin-Induced Renal Damage. Nephrology Dialysis Transplantation, 22, 2138-2148. https://doi.org/10.1093/ndt/gfm144 |