全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Identifying microRNA-Target Gene Pairs in Luminal B Breast Cancer Using Integrated Analysis of miRNA and Transcriptome Profiles

DOI: 10.4236/abcr.2024.134008, PP. 69-100

Keywords: Breast Cancer, Luminal B, miRNA, mRNA, TCGA

Full-Text   Cite this paper   Add to My Lib

Abstract:

Dysregulation of post-transcriptional regulation of gene expression has been found to influence various human disorders. Aberrant miRNA-based regulation of gene expression has been found to be associated with different cancers, including breast cancers. Very little information is available on the effect of dysregulation of miRNA-mediated regulation on luminal B breast cancer. This study was aimed at comprehending the regulation of gene expression through miRNA in luminal B breast cancers by comprehensive analysis of miRNA and mRNA expression data together. Negatively regulated miRNA-target gene pairs were identified, and the target genes were functionally enriched to identify critical pathways associated with luminal B breast cancer. Further, the prognostic significance of these miRNAs and target gene pairs was assessed to identify genes with prognostic value in luminal B breast cancer. A total of 266 differentially expressed miRNAs and 164 dysregulated miRNA-target gene pairs were identified. Four genes, including SRP9, DSN1, RACGAP1, and SLC10A6, and one miRNA, hsa-mir-421, showed significant influence on the prognosis of patients with luminal B breast cancer. Through additional experimental examination of these findings, a deeper comprehension of miRNA-based post-transcriptional regulation in luminal B breast tumors will be possible.

References

[1]  Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263.
https://doi.org/10.3322/caac.21834
[2]  Prat, A., Carey, L.A., Adamo, B., Vidal, M., Tabernero, J., Cortés, J., et al. (2014) Molecular Features and Survival Outcomes of the Intrinsic Subtypes within HER2-Positive Breast Cancer. JNCI: Journal of the National Cancer Institute, 106, dju152.
https://doi.org/10.1093/jnci/dju152
[3]  Liu, J., Huang, B., Rao, Y., Guo, L., Cai, C., Gao, D., et al. (2024) Intraductal Photothermal Ablation: A Noninvasive Approach for Early Breast Cancer Treatment and Prevention. Theranostics, 14, 3997-4013.
https://doi.org/10.7150/thno.97968
[4]  Qiu, C., Goldstrohm, A.C. and Tanaka Hall, T.M. (2019) Preparation of Cooperative RNA Recognition Complexes for Crystallographic Structural Studies. In: Methods in Enzymology, Elsevier, 1-22.
https://doi.org/10.1016/bs.mie.2019.04.001
[5]  Corbett, A.H. (2018) Post-Transcriptional Regulation of Gene Expression and Human Disease. Current Opinion in Cell Biology, 52, 96-104.
https://doi.org/10.1016/j.ceb.2018.02.011
[6]  Filipowicz, W., Bhattacharyya, S.N. and Sonenberg, N. (2008) Mechanisms of Post-Transcriptional Regulation by MicroRNAs: Are the Answers in Sight? Nature Reviews Genetics, 9, 102-114.
https://doi.org/10.1038/nrg2290
[7]  Loh, H., Norman, B.P., Lai, K., Rahman, N.M.A.N.A., Alitheen, N.B.M. and Osman, M.A. (2019) The Regulatory Role of MicroRNAs in Breast Cancer. International Journal of Molecular Sciences, 20, e4940.
https://doi.org/10.3390/ijms20194940
[8]  Xu, Y., Gong, M., Wang, Y., Yang, Y., Liu, S. and Zeng, Q. (2023) Global Trends and Forecasts of Breast Cancer Incidence and Deaths. Scientific Data, 10, Article No. 334.
https://doi.org/10.1038/s41597-023-02253-5
[9]  Ades, F., Zardavas, D., Bozovic-Spasojevic, I., Pugliano, L., Fumagalli, D., de Azambuja, E., et al. (2014) Luminal B Breast Cancer: Molecular Characterization, Clinical Management, and Future Perspectives. Journal of Clinical Oncology, 32, 2794-2803.
https://doi.org/10.1200/jco.2013.54.1870
[10]  Søkilde, R., Persson, H., Ehinger, A., Pirona, A.C., Fernö, M., Hegardt, C., et al. (2019) Refinement of Breast Cancer Molecular Classification by miRNA Expression Profiles. BMC Genomics, 20, Article No. 503.
https://doi.org/10.1186/s12864-019-5887-7
[11]  Arun, R.P., Cahill, H.F. and Marcato, P. (2022) Breast Cancer Subtype-Specific miRNAs: Networks, Impacts, and the Potential for Intervention. Biomedicines, 10, Article No. 651.
https://doi.org/10.3390/biomedicines10030651
[12]  Ulaganathan, K., Puranam, K., Mukta, S. and Hanumanth, S.R. (2023) Expression Profiling of Luminal B Breast Tumor in Indian Women. Journal of Cancer Research and Clinical Oncology, 149, 13645-13664.
https://doi.org/10.1007/s00432-023-05195-y
[13]  Love, M.I., Huber, W. and Anders, S. (2014) Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biology, 15, Article No. 550.
https://doi.org/10.1186/s13059-014-0550-8
[14]  Huang, H., Lin, Y., Cui, S., Huang, Y., Tang, Y., Xu, J., et al. (2021) miRTarBase Update 2022: An Informative Resource for Experimentally Validated MiRNA-Target Interactions. Nucleic Acids Research, 50, D222-D230.
https://doi.org/10.1093/nar/gkab1079
[15]  Kuleshov, M.V., Jones, M.R., Rouillard, A.D., Fernandez, N.F., Duan, Q., Wang, Z., et al. (2016) Enrichr: A Comprehensive Gene Set Enrichment Analysis Web Server 2016 Update. Nucleic Acids Research, 44, W90-W97.
https://doi.org/10.1093/nar/gkw377
[16]  Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., et al. (2003) Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Research, 13, 2498-2504.
https://doi.org/10.1101/gr.1239303
[17]  O'Brien, J., Hayder, H., Zayed, Y. and Peng, C. (2018) Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Frontiers in Endocrinology, 9, Article No. 402.
https://doi.org/10.3389/fendo.2018.00402
[18]  Peter, M.E. (2010) Targeting of mRNAs by Multiple mRNAs: The Next Step. Oncogene, 29, 2161-2164.
https://doi.org/10.1038/onc.2010.59
[19]  Rascio, F., Spadaccino, F., Rocchetti, M.T., Castellano, G., Stallone, G., Netti, G.S., et al. (2021) The Pathogenic Role of PI3K/AKT Pathway in Cancer Onset and Drug Resistance: An Updated Review. Cancers, 13, Article No. 3949.
https://doi.org/10.3390/cancers13163949
[20]  Shi, X., Wang, J., Lei, Y., Cong, C., Tan, D. and Zhou, X. (2019) Research Progress on the PI3K/AKT Signaling Pathway in Gynecological Cancer (Review). Molecular Medicine Reports, 19, 4529-4535.
https://doi.org/10.3892/mmr.2019.10121
[21]  Katoh, M. (2010) Genetic Alterations of FGF Receptors: An Emerging Field in Clinical Cancer Diagnostics and Therapeutics. Expert Review of Anticancer Therapy, 10, 1375-1379.
https://doi.org/10.1586/era.10.128
[22]  Wang, Y., Liu, Z. and Shen, J. (2018) MicroRNA-421-Targeted PDCD4 Regulates Breast Cancer Cell Proliferation. International Journal of Molecular Medicine, 43, 267-275.
https://doi.org/10.3892/ijmm.2018.3932
[23]  Zhang, Y., Tedja, R., Millman, M., Wong, T., Fox, A., Chehade, H., et al. (2023) Adipose-Derived Exosomal Mir-421 Targets CBX7 and Promotes Metastatic Potential in Ovarian Cancer Cells. Journal of Ovarian Research, 16, Article No. 233.
https://doi.org/10.1186/s13048-023-01312-0
[24]  Jiang, Z., Guo, J., Xiao, B., Miao, Y., Huang, R., Li, D., et al. (2009) Increased Expression of miR-421 in Human Gastric Carcinoma and Its Clinical Association. Journal of Gastroenterology, 45, 17-23.
https://doi.org/10.1007/s00535-009-0135-6
[25]  Watanabe, R., Hirano, Y., Hara, M., Hiraoka, Y. and Fukagawa, T. (2022) Mobility of Kinetochore Proteins Measured by FRAP Analysis in Living Cells. Chromosome Research, 30, 43-57.
https://doi.org/10.1007/s10577-021-09678-x
[26]  Zhou, X., Zheng, F., Wang, C., Wu, M., Zhang, X., Wang, Q., et al. (2017) Phosphorylation of CENP-C by Aurora B Facilitates Kinetochore Attachment Error Correction in Mitosis. Proceedings of the National Academy of Sciences, 114, E10667-E10676.
https://doi.org/10.1073/pnas.1710506114
[27]  Peng, Q., Wen, T., Liu, D., Wang, S., Jiang, X., Zhao, S., et al. (2021) DSN1 Is a Prognostic Biomarker and Correlated with Clinical Characterize in Breast Cancer. International Immunopharmacology, 101, Article ID: 107605.
https://doi.org/10.1016/j.intimp.2021.107605
[28]  Ng, C.K., Martelotto, L.G., Gauthier, A., Wen, H., Piscuoglio, S., Lim, R.S., et al. (2015) Intra-Tumor Genetic Heterogeneity and Alternative Driver Genetic Alterations in Breast Cancers with Heterogeneous HER2 Gene Amplification. Genome Biology, 16, Article No. 107.
https://doi.org/10.1186/s13059-015-0657-6
[29]  Akopian, D., Shen, K., Zhang, X. and Shan, S. (2013) Signal Recognition Particle: An Essential Protein-Targeting Machine. Annual Review of Biochemistry, 82, 693-721.
https://doi.org/10.1146/annurev-biochem-072711-164732
[30]  Erdoğan, G., Trabulus, D.C., Talu, C.K. and Güven, M. (2021) Investigation of SRP9 Protein Expression in Breast Cancer. Molecular Biology Reports, 49, 531-537.
https://doi.org/10.1007/s11033-021-06910-z
[31]  Hirose, K., Kawashima, T., Iwamoto, I., Nosaka, T. and Kitamura, T. (2001) MgcRacGAP Is Involved in Cytokinesis through Associating with Mitotic Spindle and Midbody. Journal of Biological Chemistry, 276, 5821-5828.
https://doi.org/10.1074/jbc.m007252200
[32]  Ren, K., Zhou, D., Wang, M., Li, E., Hou, C., Su, Y., et al. (2021) RACGAP1 Modulates ECT2-Dependent Mitochondrial Quality Control to Drive Breast Cancer Metastasis. Experimental Cell Research, 400, Article ID: 112493.
https://doi.org/10.1016/j.yexcr.2021.112493
[33]  Pliarchopoulou, K., Kalogeras, K.T., Kronenwett, R., Wirtz, R.M., Eleftheraki, A.G., Batistatou, A., et al. (2012) Prognostic Significance of RACGAP1 mRNA Expression in High-Risk Early Breast Cancer: A Study in Primary Tumors of Breast Cancer Patients Participating in a Randomized Hellenic Cooperative Oncology Group Trial. Cancer Chemotherapy and Pharmacology, 71, 245-255.
https://doi.org/10.1007/s00280-012-2002-z
[34]  Karakus, E., Schmid, A., Leiting, S., Fühler, B., Schäffler, A., Jakob, T., et al. (2022) Role of the Steroid Sulfate Uptake Transporter Soat (Slc10a6) in Adipose Tissue and 3T3-L1 Adipocytes. Frontiers in Molecular Biosciences, 9, Article ID: 863912.
https://doi.org/10.3389/fmolb.2022.863912

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133