全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类格上Lotka-Volterra合作系统受迫行波解的存在性
Existence of Forced Traveling Waves for a Class of the Lattice Lotka-Volterra Cooperative System

DOI: 10.12677/aam.2024.139406, PP. 4253-4265

Keywords: Lotka-Volterra合作系统,移动环境,受迫行波
Lotka-Volterra Cooperative System
, Shifting Environment, Forced Travelling Wave

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了描述移动环境轻度恶化对两个弱合作物种的持久性产生的影响,本文考虑一类带有与时空均相关的恒正内禀增长函数的格上Lotka-Volterra合作系统。通过构造合适的上下解并结合单调迭代的方法证明了系统存在两组受迫行波解。
In order to characterize the effect of mild deterioration of the shifting environment on the two weakly cooperative species persistence, we consider a class of the lattice Lotka-Volterra cooperative systems with a constant positive intrinsic growth function that is spatio-temporally correlated. By constructing suitable upper and slower solutions combined with the method of monotone iteration, we prove that there exist two sets of forced traveling wave solutions for the system.

References

[1]  Parmesan, C. (2006) Ecological and Evolutionary Responses to Recent Climate Change. Annual Review of Ecology, Evolution, and Systematics, 37, 637-669.
https://doi.org/10.1146/annurev.ecolsys.37.091305.110100
[2]  楼元. 空间生态学中的一些反应扩散方程模型[J]. 中国科学: 数学, 2015(10): 1619-1634.
[3]  Fang, J., Lou, Y. and Wu, J. (2016) Can Pathogen Spread Keep Pace with Its Host Invasion? SIAM Journal on Applied Mathematics, 76, 1633-1657.
https://doi.org/10.1137/15m1029564
[4]  Li, B., Bewick, S., Shang, J. and Fagan, W.F. (2014) Persistence and Spread of a Species with a Shifting Habitat Edge. SIAM Journal on Applied Mathematics, 74, 1397-1417.
https://doi.org/10.1137/130938463
[5]  Hu, C. and Li, B. (2015) Spatial Dynamics for Lattice Differential Equations with a Shifting Habitat. Journal of Differential Equations, 259, 1967-1989.
https://doi.org/10.1016/j.jde.2015.03.025
[6]  Hu, H. and Zou, X. (2017) Existence of an Extinction Wave in the Fisher Equation with a Shifting Habitat. Proceedings of the American Mathematical Society, 145, 4763-4771.
https://doi.org/10.1090/proc/13687
[7]  Berestycki, H. and Fang, J. (2018) Forced Waves of the Fisher-KPP Equation in a Shifting Environment. Journal of Differential Equations, 264, 2157-2183.
https://doi.org/10.1016/j.jde.2017.10.016
[8]  Hu, H., Yi, T. and Zou, X. (2019) On Spatial-Temporal Dynamics of a Fisher-KPP Equation with a Shifting Environment. Proceedings of the American Mathematical Society, 148, 213-221.
https://doi.org/10.1090/proc/14659
[9]  Qiao, S., Li, W. and Wang, J. (2022) Multi-type Forced Waves in Nonlocal Dispersal KPP Equations with Shifting Habitats. Journal of Mathematical Analysis and Applications, 505, Article ID: 125504.
https://doi.org/10.1016/j.jmaa.2021.125504
[10]  Guo, J., Poh, A.A.L. and Wu, C. (2023) Forced Waves of Saturation Type for Fisher-KPP Equation in a Shifting Environment. Applied Mathematics Letters, 140, Article ID: 108573.
https://doi.org/10.1016/j.aml.2023.108573
[11]  Guo, J., Guo, K. and Shimojo, M. (2024) Uniqueness and Stability of Forced Waves for the Fisher-KPP Equation in a Shifting Environment. Nonlinear Analysis, 247, Article ID: 113607.
https://doi.org/10.1016/j.na.2024.113607
[12]  Meng, Y., Yu, Z. and Zhang, L. (2024) Existence, Uniqueness and Stability of Forced Waves for Asymptotical KPP Equations with the Nonlocal Dispersal in a Shifting Habitat. Discrete and Continuous Dynamical Systems—B, 29, 2382-2398.
https://doi.org/10.3934/dcdsb.2023182
[13]  Hu, H., Yi, T. and Zou, X. (2019) On Spatial-Temporal Dynamics of a Fisher-KPP Equation with a Shifting Environment. Proceedings of the American Mathematical Society, 148, 213-221.
https://doi.org/10.1090/proc/14659
[14]  Yi, T., Chen, Y. and Wu, J. (2020) Asymptotic Propagations of Asymptotical Monostable Type Equations with Shifting Habitats. Journal of Differential Equations, 269, 5900-5930.
https://doi.org/10.1016/j.jde.2020.04.025
[15]  Yang, Y., Wu, C. and Li, Z. (2019) Forced Waves and Their Asymptotics in a Lotka-Volterra Cooperative Model under Climate Change. Applied Mathematics and Computation, 353, 254-264.
https://doi.org/10.1016/j.amc.2019.01.058
[16]  Yuan, Y., Wang, Y. and Zou, X. (2019) Spatial Dynamics of a Lotka-Volterra Model with a Shifting Habitat. Discrete and Continuous Dynamical Systems—B, 24, 5633-5671.
[17]  Wu, C. and Xu, Z. (2021) Propagation Dynamics in a Heterogeneous Reaction-Diffusion System under a Shifting Environment. Journal of Dynamics and Differential Equations, 35, 493-521.
https://doi.org/10.1007/s10884-021-10018-0
[18]  Wang, H., Pan, C. and Ou, C. (2021) Existence, Uniqueness and Stability of Forced Waves to the Lotka‐Volterra Competition System in a Shifting Environment. Studies in Applied Mathematics, 148, 186-218.
https://doi.org/10.1111/sapm.12438
[19]  Wang, H., Pan, C. and Ou, C. (2020) Existence of Forced Waves and Gap Formations for the Lattice Lotka-Volterra Competition System in a Shifting Environment. Applied Mathematics Letters, 106, Article ID: 106349.
https://doi.org/10.1016/j.aml.2020.106349
[20]  Qiao, S., Zhu, J. and Wang, J. (2021) Asymptotic Behaviors of Forced Waves for the Lattice Lotka-Volterra Competition System with Shifting Habitats. Applied Mathematics Letters, 118, Article ID: 107168.
https://doi.org/10.1016/j.aml.2021.107168
[21]  Meng, Y., Yu, Z. and Zhang, S. (2021) Spatial Dynamics of the Lattice Lotka-Volterra Competition System in a Shifting Habitat. Nonlinear Analysis: Real World Applications, 60, Article ID: 103287.
https://doi.org/10.1016/j.nonrwa.2020.103287
[22]  Zhu, J., Wang, J. and Dong, F. (2022) Spatial Propagation for the Lattice Competition System in Moving Habitats. Zeitschrift für angewandte Mathematik und Physik, 73, Article No. 92.
https://doi.org/10.1007/s00033-022-01735-7
[23]  Guo, J., Guo, K. and Shimojo, M. (2023) Forced Waves for Diffusive Competition Systems in Shifting Environments. Nonlinear Analysis: Real World Applications, 73, Article ID: 103880.
https://doi.org/10.1016/j.nonrwa.2023.103880
[24]  Huang, B. and Dai, B. (2024) Spatial Dynamics of a Lattice Lotka-Volterra Competition Model with a Shifting Habitat. Journal of Nonlinear Modeling and Analysis, 6, 161-183.
[25]  Wu, J. and Zou, X. (2001) Traveling Wave Fronts of Reaction-Diffusion Systems with Delay. Journal of Dynamics and Differential Equations, 13, 651-687.
https://doi.org/10.1023/a:1016690424892

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133