%0 Journal Article
%T 一类格上Lotka-Volterra合作系统受迫行波解的存在性
Existence of Forced Traveling Waves for a Class of the Lattice Lotka-Volterra Cooperative System
%A 吴振宇
%J Advances in Applied Mathematics
%P 4253-4265
%@ 2324-8009
%D 2024
%I Hans Publishing
%R 10.12677/aam.2024.139406
%X 为了描述移动环境轻度恶化对两个弱合作物种的持久性产生的影响,本文考虑一类带有与时空均相关的恒正内禀增长函数的格上Lotka-Volterra合作系统。通过构造合适的上下解并结合单调迭代的方法证明了系统存在两组受迫行波解。
In order to characterize the effect of mild deterioration of the shifting environment on the two weakly cooperative species persistence, we consider a class of the lattice Lotka-Volterra cooperative systems with a constant positive intrinsic growth function that is spatio-temporally correlated. By constructing suitable upper and slower solutions combined with the method of monotone iteration, we prove that there exist two sets of forced traveling wave solutions for the system.
%K Lotka-Volterra合作系统,
%K 移动环境,
%K 受迫行波
Lotka-Volterra Cooperative System
%K Shifting Environment
%K Forced Travelling Wave
%U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=96535