|
基于组学技术挖掘植物天然产物合成途径研究进展
|
Abstract:
组学技术主要包括基因组、转录组、代谢组和蛋白组,是当前挖掘和解析植物天然产物生物合成途径的重要技术手段。本文主要概述了生物合成基因簇、基因共表达、基因家族和表观共调控在植物天然产物合成途径解析中的应用,并对当前生物合成途径解析的主要进展进行了回顾,以期为植物生物合成途径挖掘和解析提供参考。
Omics technologies, which mainly include genomics, transcriptomics, metabolomics, and proteomics, are important technical methods for mining and analyzing the biosynthetic pathways of natural products in plants at present. This review mainly outlines the application of biosynthetic gene clusters, gene co-expression, gene families, and epigenetic co-regulation in the analysis of plant natural product synthesis pathways, and summarize the main progress in the current analysis of biosynthetic pathways, to provide a sight for the mining and analysis of plant biosynthetic pathways.
[1] | Perkins, J., Hayashi, T., Peakall, R., Flematti, G.R. and Bohman, B. (2023) The Volatile Chemistry of Orchid Pollination. Natural Product Reports, 40, 819-839. https://doi.org/10.1039/d2np00060a |
[2] | Wong, D.C.J., Pichersky, E. and Peakall, R. (2023) Many Different Flowers Make a Bouquet: Lessons from Specialized Metabolite Diversity in Plant-Pollinator Interactions. Current Opinion in Plant Biology, 73, Article 102332. https://doi.org/10.1016/j.pbi.2022.102332 |
[3] | Marone, D., Mastrangelo, A.M., Borrelli, G.M., Mores, A., Laidò, G., Russo, M.A., et al. (2022) Specialized Metabolites: Physiological and Biochemical Role in Stress Resistance, Strategies to Improve Their Accumulation, and New Applications in Crop Breeding and Management. Plant Physiology and Biochemistry, 172, 48-55. https://doi.org/10.1016/j.plaphy.2021.12.037 |
[4] | Lim, P.T., Goh, B.H. and Lee, W. (2022) Taxol: Mechanisms of Action against Cancer, an Update with Current Research. In: Swamy, M.K., Pullaiah, T. and Chen, Z.-S., Eds., Paclitaxel, Academic Press, 47-71. https://doi.org/10.1016/b978-0-323-90951-8.00007-2 |
[5] | Xiong, X., Gou, J., Liao, Q., Li, Y., Zhou, Q., Bi, G., et al. (2021) The Taxus Genome Provides Insights into Paclitaxel Biosynthesis. Nature Plants, 7, 1026-1036. https://doi.org/10.1038/s41477-021-00963-5 |
[6] | 张发光, 曲戈, 孙周通, 马军安. 从化学合成到生物合成——天然产物全合成新趋势[J]. 合成生物学, 2021, 2(5): 674-696. |
[7] | Lai, M.J. and Lan, E.I. (2019) Photoautotrophic Synthesis of Butyrate by Metabolically Engineered Cyanobacteria. Biotechnology and Bioengineering, 116, 893-903. https://doi.org/10.1002/bit.26903 |
[8] | Voigt, C.A. (2020) Synthetic Biology 2020-2030: Six Commercially-Available Products That Are Changing Our World. Nature Communications, 11, Article No. 6379. https://doi.org/10.1038/s41467-020-20122-2 |
[9] | Kharissova, O.V., Kharisov, B.I., Oliva González, C.M., Méndez, Y.P. and López, I. (2019) Greener Synthesis of Chemical Compounds and Materials. Royal Society Open Science, 6, Article 191378. https://doi.org/10.1098/rsos.191378 |
[10] | Wang, J., Liu, J. and Yu, S. (2019) Recycling Valuable Elements from the Chemical Synthesis Process of Nanomaterials: A Sustainable View. ACS Materials Letters, 1, 541-548. https://doi.org/10.1021/acsmaterialslett.9b00283 |
[11] | Hansen, C.C., Sørensen, M., Bellucci, M., Brandt, W., Olsen, C.E., Goodger, J.Q.D., et al. (2022) Recruitment of Distinct UDP‐Glycosyltransferase Families Demonstrates Dynamic Evolution of Chemical Defense within Eucalyptus L’Hér. New Phytologist, 237, 999-1013. https://doi.org/10.1111/nph.18581 |
[12] | Scherlach, K. and Hertweck, C. (2021) Mining and Unearthing Hidden Biosynthetic Potential. Nature Communications, 12, Article No. 3864. https://doi.org/10.1038/s41467-021-24133-5 |
[13] | Singh, K.S., van der Hooft, J.J.J., van Wees, S.C.M. and Medema, M.H. (2022) Integrative Omics Approaches for Biosynthetic Pathway Discovery in Plants. Natural Product Reports, 39, 1876-1896. https://doi.org/10.1039/d2np00032f |
[14] | Zhao, K. and Rhee, S.Y. (2022) Omics-Guided Metabolic Pathway Discovery in Plants: Resources, Approaches, and Opportunities. Current Opinion in Plant Biology, 67, Article 102222. https://doi.org/10.1016/j.pbi.2022.102222 |
[15] | Shen, S., Zhan, C., Yang, C., Fernie, A.R. and Luo, J. (2023) Metabolomics-Centered Mining of Plant Metabolic Diversity and Function: Past Decade and Future Perspectives. Molecular Plant, 16, 43-63. https://doi.org/10.1016/j.molp.2022.09.007 |
[16] | Jiang, B., Gao, L., Wang, H., Sun, Y., Zhang, X., Ke, H., et al. (2024) Characterization and Heterologous Reconstitution of Taxus Biosynthetic Enzymes Leading to Baccatin III. Science, 383, 622-629. https://doi.org/10.1126/science.adj3484 |
[17] | Li, J., Mutanda, I., Wang, K., Yang, L., Wang, J. and Wang, Y. (2019) Chloroplastic Metabolic Engineering Coupled with Isoprenoid Pool Enhancement for Committed Taxanes Biosynthesis in Nicotiana benthamiana. Nature Communications, 10, Article No. 4850. https://doi.org/10.1038/s41467-019-12879-y |
[18] | Wang, Y., Huang, J., Tian, T., Yan, Y., Chen, Y., Yang, J., et al. (2022) Discovery and Engineering of the Cocaine Biosynthetic Pathway. Journal of the American Chemical Society, 144, 22000-22007. https://doi.org/10.1021/jacs.2c09091 |
[19] | Wang, S., Liu, L., Mi, X., Zhao, S., An, Y., Xia, X., et al. (2021) Multi‐Omics Analysis to Visualize the Dynamic Roles of Defense Genes in the Response of Tea Plants to Gray Blight. The Plant Journal, 106, 862-875. https://doi.org/10.1111/tpj.15203 |
[20] | Wang, N. and Huo, Y. (2022) Using Genome and Transcriptome Analysis to Elucidate Biosynthetic Pathways. Current Opinion in Biotechnology, 75, Article 102708. https://doi.org/10.1016/j.copbio.2022.102708 |
[21] | Polturak, G., Liu, Z. and Osbourn, A. (2022) New and Emerging Concepts in the Evolution and Function of Plant Biosynthetic Gene Clusters. Current Opinion in Green and Sustainable Chemistry, 33, Article 100568. https://doi.org/10.1016/j.cogsc.2021.100568 |
[22] | Smit, S.J. and Lichman, B.R. (2022) Plant Biosynthetic Gene Clusters in the Context of Metabolic Evolution. Natural Product Reports, 39, 1465-1482. https://doi.org/10.1039/d2np00005a |
[23] | Nützmann, H. and Osbourn, A. (2014) Gene Clustering in Plant Specialized Metabolism. Current Opinion in Biotechnology, 26, 91-99. https://doi.org/10.1016/j.copbio.2013.10.009 |
[24] | Nützmann, H., Huang, A. and Osbourn, A. (2016) Plant Metabolic Clusters—From Genetics to Genomics. New Phytologist, 211, 771-789. https://doi.org/10.1111/nph.13981 |
[25] | Frey, M., Chomet, P., Glawischnig, E., Stettner, C., Grün, S., Winklmair, A., et al. (1997) Analysis of a Chemical Plant Defense Mechanism in Grasses. Science, 277, 696-699. https://doi.org/10.1126/science.277.5326.696 |
[26] | Ferruz, N., Schmidt, S. and Höcker, B. (2021) Proteintools: A Toolkit to Analyze Protein Structures. Nucleic Acids Research, 49, W559-W566. https://doi.org/10.1093/nar/gkab375 |
[27] | Sun, J., Lu, F., Luo, Y., Bie, L., Xu, L. and Wang, Y. (2023) OrthoVenn3: An Integrated Platform for Exploring and Visualizing Orthologous Data across Genomes. Nucleic Acids Research, 51, W397-W403. https://doi.org/10.1093/nar/gkad313 |
[28] | Chavali, A.K. and Rhee, S.Y. (2017) Bioinformatics Tools for the Identification of Gene Clusters That Biosynthesize Specialized Metabolites. Briefings in Bioinformatics, 19, 1022-1034. https://doi.org/10.1093/bib/bbx020 |
[29] | Amos, G.C.A., Awakawa, T., Tuttle, R.N., Letzel, A., Kim, M.C., Kudo, Y., et al. (2017) Comparative Transcriptomics as a Guide to Natural Product Discovery and Biosynthetic Gene Cluster Functionality. Proceedings of the National Academy of Sciences, 114, E11121-E11130. https://doi.org/10.1073/pnas.1714381115 |
[30] | Zhan, C., Shen, S., Yang, C., Liu, Z., Fernie, A.R., Graham, I.A., et al. (2022) Plant Metabolic Gene Clusters in the Multi-Omics Era. Trends in Plant Science, 27, 981-1001. https://doi.org/10.1016/j.tplants.2022.03.002 |
[31] | Liu, M., Li, Y. and Li, H. (2022) Deep Learning to Predict the Biosynthetic Gene Clusters in Bacterial Genomes. Journal of Molecular Biology, 434, Article 167597. https://doi.org/10.1016/j.jmb.2022.167597 |
[32] | Zhang, X., Liu, C., Dai, J., Yuan, Y., Gao, C., Feng, Y., et al. (2023) Enabling Technology and Core Theory of Synthetic Biology. Science China Life Sciences, 66, 1742-1785. https://doi.org/10.1007/s11427-022-2214-2 |
[33] | Depuydt, T., De Rybel, B. and Vandepoele, K. (2023) Charting Plant Gene Functions in the Multi-Omics and Single-Cell Era. Trends in Plant Science, 28, 283-296. https://doi.org/10.1016/j.tplants.2022.09.008 |
[34] | Hemenway, E.A. and Gehring, M. (2023) Epigenetic Regulation during Plant Development and the Capacity for Epigenetic Memory. Annual Review of Plant Biology, 74, 87-109. https://doi.org/10.1146/annurev-arplant-070122-025047 |
[35] | Zhang, W., Zeng, Y., Jiao, M., Ye, C., Li, Y., Liu, C., et al. (2023) Integration of High-Throughput Omics Technologies in Medicinal Plant Research: The New Era of Natural Drug Discovery. Frontiers in Plant Science, 14, Article 1073848. https://doi.org/10.3389/fpls.2023.1073848 |
[36] | Butte, A.J. and Kohane, I.S. (2003) Relevance Networks: A First Step toward Finding Genetic Regulatory Networks within Microarray Data. In: Parmigiani, G., Garrett, E.S., Irizarry, R.A. and Zeger, S.L., Eds., The Analysis of Gene Expression Data, Springer, 428-446. https://doi.org/10.1007/0-387-21679-0_19 |
[37] | Piya, S., Pantalone, V., Zadegan, S.B., Shipp, S., Lakhssassi, N., Knizia, D., et al. (2023) Soybean Gene Co‐Expression Network Analysis Identifies Two Co‐Regulated Gene Modules Associated with Nodule Formation and Development. Molecular Plant Pathology, 24, 628-636. https://doi.org/10.1111/mpp.13327 |
[38] | Guo, C., Xie, B. and Liu, Q. (2022) Weighted Gene Co-Expression Network Analysis Combined with Machine Learning Validation to Identify Key Hub Biomarkers in Colorectal Cancer. Functional & Integrative Genomics, 23, Article No. 24. https://doi.org/10.1007/s10142-022-00949-2 |
[39] | Zhang, A., Zhang, Q., Li, J., Gong, H., Fan, X., Yang, Y., et al. (2020) Transcriptome Co-Expression Network Analysis Identifies Key Genes and Regulators of Ripening Kiwifruit Ester Biosynthesis. BMC Plant Biology, 20, Article No. 103. https://doi.org/10.1186/s12870-020-2314-9 |
[40] | Alcantar, M.A., English, M.A., Valeri, J.A. and Collins, J.J. (2024) A High-Throughput Synthetic Biology Approach for Studying Combinatorial Chromatin-Based Transcriptional Regulation. Molecular Cell, 84, 2382-2396.E9. https://doi.org/10.1016/j.molcel.2024.05.025 |
[41] | Farhadian, M., Rafat, S.A., Panahi, B. and Mayack, C. (2021) Weighted Gene Co-Expression Network Analysis Identifies Modules and Functionally Enriched Pathways in the Lactation Process. Scientific Reports, 11, Article No. 2367. https://doi.org/10.1038/s41598-021-81888-z |
[42] | Ng, M. and Yanofsky, M.F. (2001) Function and Evolution of the Plant Mads-Box Gene Family. Nature Reviews Genetics, 2, 186-195. https://doi.org/10.1038/35056041 |
[43] | Bélanger, S., Zhan, J. and Meyers, B.C. (2023) Phylogenetic Analyses of Seven Protein Families Refine the Evolution of Small RNA Pathways in Green Plants. Plant Physiology, 192, 1183-1203. https://doi.org/10.1093/plphys/kiad141 |
[44] | Blázquez, M.A., Nelson, D.C. and Weijers, D. (2020) Evolution of Plant Hormone Response Pathways. Annual Review of Plant Biology, 71, 327-353. https://doi.org/10.1146/annurev-arplant-050718-100309 |
[45] | Waite, J.M. and Dardick, C. (2021) The Roles of the IGT Gene Family in Plant Architecture: Past, Present, and Future. Current Opinion in Plant Biology, 59, Article 101983. https://doi.org/10.1016/j.pbi.2020.101983 |
[46] | Zhang, J., Fu, X., Li, R., Zhao, X., Liu, Y., Li, M., et al. (2020) The Hornwort Genome and Early Land Plant Evolution. Nature Plants, 6, 107-118. https://doi.org/10.1038/s41477-019-0588-4 |
[47] | Man, J., Gallagher, J.P. and Bartlett, M. (2020) Structural Evolution Drives Diversification of the Large LRR‐RLK Gene Family. New Phytologist, 226, 1492-1505. https://doi.org/10.1111/nph.16455 |
[48] | Jaenisch, R. and Bird, A. (2003) Epigenetic Regulation of Gene Expression: How the Genome Integrates Intrinsic and Environmental Signals. Nature Genetics, 33, 245-254. https://doi.org/10.1038/ng1089 |
[49] | Moore, L.D., Le, T. and Fan, G. (2012) DNA Methylation and Its Basic Function. Neuropsychopharmacology, 38, 23-38. https://doi.org/10.1038/npp.2012.112 |
[50] | Bannister, A.J. and Kouzarides, T. (2011) Regulation of Chromatin by Histone Modifications. Cell Research, 21, 381-395. https://doi.org/10.1038/cr.2011.22 |
[51] | Mattick, J.S., Amaral, P.P., Carninci, P., Carpenter, S., Chang, H.Y., Chen, L., et al. (2023) Long Non-Coding RNAs: Definitions, Functions, Challenges and Recommendations. Nature Reviews Molecular Cell Biology, 24, 430-447. https://doi.org/10.1038/s41580-022-00566-8 |
[52] | Gibney, E.R. and Nolan, C.M. (2010) Epigenetics and Gene Expression. Heredity, 105, 4-13. https://doi.org/10.1038/hdy.2010.54 |
[53] | Escrich, A., Cusido, R.M., Bonfill, M., Palazon, J., Sanchez-Muñoz, R. and Moyano, E. (2022) The Epigenetic Regulation in Plant Specialized Metabolism: DNA Methylation Limits Paclitaxel in vitro Biotechnological Production. Frontiers in Plant Science, 13, Article 899444. https://doi.org/10.3389/fpls.2022.899444 |
[54] | Lin, X., Han, H., Wang, N., Wang, C., Qi, M., Wang, J., et al. (2024) The Gut Microbial Regulation of Epigenetic Modification from a Metabolic Perspective. International Journal of Molecular Sciences, 25, Article 7175. https://doi.org/10.3390/ijms25137175 |