Production of cowpea (Vigna unguiculata (L.) Walp.), a staple legume crop in Sub-Saharan Africa, faces challenges due to biotic and abiotic constraints. Induced mutagenesis was deployed to create genetic variation in two cowpea varieties (KVX396-4-5-2D and Moussa local). The radio-sensitivity tests led to determe the lethal dose 50 (LD50) corresponding to 230 Gy and 220 Gy for KVX396-4-5-2D and Moussa local varieties, respectively. Dried seeds (M0) of each variety were gamma-ray irradiated with LD50 ? 50, LD50 and LD50 + 50. M1 seeds were advanced to generate M2, M3 and M4 mutants using the single-seed-descent method. M4 mutant lines were evaluated in rain-fed conditions using a randomized complete block design to assess phenotypic differences. Data on seven qualitative and eleven quantitative traits were collected. The results indicated that the mutation induced variability in three qualitative traits: in KVX 396-4-5-2D mutant lines, with flower and seed color frequencies at 2.61% and 0.56% respectively, and pod dehiscence at a frequency of 0.24%. While in Moussa local mutants, a pod color changed at a frequency of 17%. ANOVA results revealed significant differences between mutants of both varieties for all quantitative traits, including photosynthetic parameters. Positive correlations were observed between leaf diameter and 100-seed weight, and between branch number and 100-seed weight. Hierarchical clustering revealed three clusters among KVX 396-4-5-2D mutants and six clusters among Moussa local mutants. Early maturity and high foliage were induced traits in Cluster 3 of KVX 396-4-5-2D mutants while high hundred-seed weight was induced in Cluster 6 of Moussa local mutants.
References
[1]
Sombié, P., Compaoré, M., Coulibaly, A., Ouédraogo, J., Tignégré, J. and Kiendrébéogo, M. (2018) Antioxidant and Phytochemical Studies of 31 Cowpeas (Vigna unguiculata (L. Walp.)) Genotypes from Burkina Faso. Foods, 7, Article 143. https://doi.org/10.3390/foods7090143
[2]
Horn, L.N. and Shimelis, H. (2020) Production Constraints and Breeding Approaches for Cowpea Improvement for Drought Prone Agro-Ecologies in Sub-Saharan Africa. Annals of Agricultural Sciences, 65, 83-91. https://doi.org/10.1016/j.aoas.2020.03.002
[3]
Nkomo, G.V., Sedibe, M.M. and Mofokeng, M.A. (2021) Production Constraints and Improvement Strategies of Cowpea (Vigna unguiculata L. Walp.) Genotypes for Drought Tolerance. International Journal of Agronomy, 2021, Article ID: 5536417. https://doi.org/10.1155/2021/5536417
Abebe, B.K. and Alemayehu, M.T. (2022) A Review of the Nutritional Use of Cowpea (Vigna unguiculata L. Walp) for Human and Animal Diets. Journal of Agriculture and Food Research, 10, Article ID: 100383. https://doi.org/10.1016/j.jafr.2022.100383
[6]
ZinmanKé, C., Antoine, B., Jean-Baptiste, T., Zakaria, K., Benoit Joseph, B., Zakaria, D., et al. (2020) Évaluation des performances agronomiques de douze (12) variétés de niébé vert [Vigna unguiculata (L.) walp.] au Burkina Faso. Journal of Applied Biosciences, 153, 15745-15755. https://doi.org/10.35759/jabs.153.2
[7]
Raina, A., Laskar, R.A., Tantray, Y.R., Khursheed, S., Wani, M.R. and Khan, S. (2020) Characterization of Induced High Yielding Cowpea Mutant Lines Using Physiological, Biochemical and Molecular Markers. Scientific Reports, 10, Article No. 3687. https://doi.org/10.1038/s41598-020-60601-6
[8]
Mekonnen, T.W., Gerrano, A.S., Mbuma, N.W. and Labuschagne, M.T. (2022) Breeding of Vegetable Cowpea for Nutrition and Climate Resilience in Sub-Saharan Africa: Progress, Opportunities, and Challenges. Plants, 11, Article 1583. https://doi.org/10.3390/plants11121583
[9]
Badiane, F.A., Diouf, M. and Diouf, D. (2014) Cowpea. In: Singh, M., Bisht, I. and Dutta, M., Eds., BroadeningtheGeneticBaseofGrainLegumes, Springer, 95-114. https://doi.org/10.1007/978-81-322-2023-7_5
[10]
Boukar, O., Belko, N., Chamarthi, S., Togola, A., Batieno, J., Owusu, E., et al. (2018) Cowpea (Vigna unguiculata): Genetics, Genomics and Breeding. Plant Breeding, 138, 415-424. https://doi.org/10.1111/pbr.12589
[11]
Gnankambary, K., Batieno, T.B.J., Sawadogo, N., Sawadogo, M., Tignegre, J.B., Yonli, D., et al. (2019) Genetic Variability Induced by γ Radiation in Cowpea [(Vigna unguiculata L. (walp)] in Burkina Faso. European Scientific Journal, 15, 153-164. https://doi.org/10.19044/esj.2019.v15n15p153
[12]
Horn, L.N., Ghebrehiwot, H.M. and Shimelis, H.A. (2016) Selection of Novel Cowpea Genotypes Derived through γ Irradiation. Frontiers in Plant Science, 7, Article 262. https://doi.org/10.3389/fpls.2016.00262
[13]
Nikièma, M.P., Yonli, D., Rabefiraisana, H.J., Ali, A., Ouédraogo, N., Traoré, H., Yanogo, H.Y.A., Dao, K., Sawadogo, M., Jankuloski, L., Ivan, I. and Abdelbagi, M.A.G. (2020) Induced Resistance to Striga Hermonthica in Sorghum by γ Irradiation. American Journal of Plant Sciences, 11, 1545-1561. https://doi.org/10.20944/preprints202007.0727.v1
[14]
Sanou, A., Yonli, D., Nofou, O., Honore, K., Souleymane, D., Karim, T., Irenée, S. and Hamidou, T. (2022) Criblage Des Lignées de Riz Mutant Vis-à-Vis Du Striga Hermonthica. Science et Technique, Sciences Naturelles et Appliquées, Hors-Serie, 6, 194-204.
[15]
Gnankambary, K., Sawadogo, N., Diéni, Z., Batieno, T.B.J., Tignegré, J.B.D.S., Sawadogo, M., et al. (2020) Assessment of Cowpea (Vigna unguiculata (L.) Walp.) Mutant Lines for Drought Tolerance. InternationalJournalofAgronomy, 2020, Article ID: 8823498. https://doi.org/10.1155/2020/8823498
[16]
Thiombiano, A. and Kampmann, D. (2010) Atlas de La Biodiversité de l’Afrique de l’Ouest, Tome II: Burkina Faso. Projet BIOTA Afrique.
[17]
Kuhlgert, S., Austic, G., Zegarac, R., Osei-Bonsu, I., Hoh, D., Chilvers, M.I., et al. (2016) MultispeQ β: A Tool for Large-Scale Plant Phenotyping Connected to the Open PhotosynQ Network. RoyalSocietyOpenScience, 3, Article ID: 160592. https://doi.org/10.1098/rsos.160592
[18]
R Core Team (2019) R: A Language and Environment for Statistical Computing [Computer Software]. R Foundation for Statistical Computing. https://www.R-project.org
[19]
Kang, R., Seo, E., Kim, G., Park, A., Kim, W.J., Kang, S., et al. (2020) Radio Sensitivity of Cowpea Plants after γ-Ray and Proton-Beam Irradiation. PlantBreedingandBiotechnology, 8, 281-292. https://doi.org/10.9787/pbb.2020.8.3.281
[20]
Horn, L. and Shimelis, H. (2013) Radio-Sensitivity of Selected Cowpea (Vigna unguiculata) Genotypes to Varying γ Irradiation Doses. Scientific Research and Essays, 8, 1991-1997.
[21]
Mudibu, J., K. C. Nkongolo, K., Kalonji-Mbuyi, A. and Kizungu, R.V. (2012) Effect of γ Irradiation on Morpho-Agronomic Characteristics of Soybeans (Glycine max L.). AmericanJournalofPlantSciences, 3, 331-337. https://doi.org/10.4236/ajps.2012.33039
[22]
Roy, U., Basak, D. and Nath, S. (2019) Mutagenic Sensitivity Analysis of γ Irradiations in Cowpea (Vigna unguiculata L. Walp). EmergentLifeSciencesResearch, 5, 12-16. https://doi.org/10.31783/elsr.2019.521216
[23]
Raina, A., Khursheed, S. and Khan, S. (2018) Optimisation of Mutagen Doses for γ Rays and Sodium Azide in Cowpea Genotypes. Trends in Biochemical Sciences, 11, 2386-2389.
[24]
Vasudevan, S., Dhanarajan, A., Kasim, Y., Sankar, V., Govindasamy, B. and Gurunathan, S. (2023) Evaluation of Morphophysiological, Biochemical and Antioxidant Activity of Green Gram (Vigna radiata (L.) R. Wilczek) in Responses to γ Irradiation. PlantScienceToday, 10, 289-301. https://doi.org/10.14719/pst.2141
[25]
Riviello-Flores, M.D.L.L., Cadena-Iñiguez, J., Ruiz-Posadas, L.D.M., Arévalo-Galarza, M.D.L., Castillo-Juárez, I., Soto Hernández, M., et al. (2022) Use of γ Radiation for the Genetic Improvement of Underutilized Plant Varieties. Plants, 11, Article 1161. https://doi.org/10.3390/plants11091161
[26]
Adekola, O.F. and Oluleye, F. (2007) Induction of Genetic Variation in Cowpea (Vigna unguiculata L. Walp.) by γ Irradiation. AsianJournalofPlantSciences, 6, 869-873. https://doi.org/10.3923/ajps.2007.869.873
[27]
Diouf, M., Diallo, S., Abaye Badiane, F., Diack, O. and Diouf, D. (2021) Development of New Cowpea (Vigna unguiculata) Mutant Genotypes, Analysis of Their Agromorphological Variation, Genetic Diversity and Population Structure. BIOCELL, 45, 345-362. https://doi.org/10.32604/biocell.2021.013706
[28]
Opoku Gyamfi, M., Eleblu, J.S.Y., Sarfoa, L.G., Asante, I.K., Opoku-Agyemang, F. and Danquah, E.Y. (2022) Induced Variations of Ethyl Methane Sulfonate Mutagenized Cowpea (Vigna unguiculata L. Walp) Plants. FrontiersinPlantScience, 13, Article 952247. https://doi.org/10.3389/fpls.2022.952247
[29]
Fawole, I. (2001) Genetic Analysis of Mutations at Loci Controlling Leaf Form in Cowpea (Vigna unguiculata [L.] Walp.). JournalofHeredity, 92, 43-50. https://doi.org/10.1093/jhered/92.1.43
[30]
Massey, P. and Nautiyal, M. (2020) Studies on Induction of Genetic Variation through Seed Mutation in Cowpea (Vigna unguiculata L. Walp.) by γ Irradiation. InternationalJournalofChemicalStudies, 8, 796-800. https://doi.org/10.22271/chemi.2020.v8.i1l.8362
[31]
Lachyan, T.S., Desai, S.S. and Dalvi, V.V. (2016) Inheritance Study of Qualitative and Quantitative Characters in Cowpea Varieties (Vigna unguiculata (L.) Walp). ElectronicJournalofPlantBreeding, 7, 708-713. https://doi.org/10.5958/0975-928x.2016.00091.0
[32]
Wani, M., Dar, A., Tak, A., Amin, I., Shah, N., et al. (2018) Chemo-Induced Pod and Seed Mutants in Mungbean (Vigna radiata L. Wilczek). SAARCJournalofAgriculture, 15, 57-67. https://doi.org/10.3329/sja.v15i2.35161
[33]
Sakamoto, K., Nishi, M., Ishiji, K., Takatori, Y. and Chiwata, R. (2019) Induction of Flower-Colour Mutation by Synchrotron-Light Irradiation in Spray Chrysanthemum. ActaHorticulturae, 1237, 73-78. https://doi.org/10.17660/actahortic.2019.1237.9
[34]
Herniter, I.A., Muñoz-Amatriaín, M., Lo, S., Guo, Y. and Close, T.J. (2018) Identification of Candidate Genes Controlling Black Seed Coat and Pod Tip Color in Cowpea (Vignaunguiculata [L.] Walp). G3 Genes|Genomes|Genetics, 8, 3347-3355. https://doi.org/10.1534/g3.118.200521
[35]
Gnanamurthy, S. and Dhanavel, D. (2014) Effect of EMS on Induced Morphological Mutants and Chromosomal Variation in Cowpea (Vigna unguiculata (L.) Walp). InternationalLettersofNaturalSciences, 22, 33-43. https://doi.org/10.56431/p-i0xny2
[36]
Vining, K.J., Hummer, K.E., Bassil, N.V., Lange, B.M., Khoury, C.K. and Carver, D. (2020) Crop Wild Relatives as Germplasm Resource for Cultivar Improvement in Mint (Mentha L.). FrontiersinPlantScience, 11, Article 1217. https://doi.org/10.3389/fpls.2020.01217
[37]
Parker, T.A., Lo, S. and Gepts, P. (2021) Pod Shattering in Grain Legumes: Emerging Genetic and Environment-Related Patterns. ThePlantCell, 33, 179-199. https://doi.org/10.1093/plcell/koaa025
[38]
Girish, G., Viswanatha, K.P. and Manjunath, A. (2010) Arrangement of Genes on Chromosome in Cowpea Vigna unguiculata (L.) Walp. Environment and Ecology, 28, 1031-1045.
[39]
Parker, T.A., Berny Mier y Teran, J.C., Palkovic, A., Jernstedt, J. and Gepts, P. (2019) Pod Indehiscence Is a Domestication and Aridity Resilience Trait in Common Bean. NewPhytologist, 225, 558-570. https://doi.org/10.1111/nph.16164
[40]
Gnanamurthy, S. and Dhanavel, D. (2014) Effect of EMS on Induced Morphological Mutants and Chromosomal Variation in Cowpea (Vigna unguiculata (L.) Walp). InternationalLettersofNaturalSciences, 22, 33-43. https://doi.org/10.56431/p-i0xny2
[41]
Dorvlo, I.K., Amenorpe, G., Amoatey, H.M., Amiteye, S., Kutufam, J.T., Afutu, E., et al. (2022) Improvement in Cowpea Variety Videza for Traits of Extra Earliness and Higher Seed Yield. Heliyon, 8, e12059. https://doi.org/10.1016/j.heliyon.2022.e12059
[42]
Owusu, E.Y., Kusi, F., Kena, A.W., Akromah, R., Attamah, P., Awuku, F.J., et al. (2022) Genetic Control of Earliness in Cowpea (Vigna unguiculata (L) Walp). Heliyon, 8, e09852. https://doi.org/10.1016/j.heliyon.2022.e09852
[43]
Raina, A. and Khan, S. (2023) Field Assessment of Yield and Its Contributing Traits in Cowpea Treated with Lower, Intermediate, and Higher Doses of γ Rays and Sodium Azide. FrontiersinPlantScience, 14, Article 1188077. https://doi.org/10.3389/fpls.2023.1188077
[44]
Kumar, V.A., Vairam, N. and Amutha, R. (2010) Effect of Physical Mutagen on Expression of Characters in Arid Legume Pulse Cowpea (Vigna unguiculata (L.) Walp.). ElectronicJournalofPlantBreeding, 1, 908-914.
[45]
Anjana, G. and Thimmaiah, S.K. (2002) Evaluation of Dwarf Mutant of Cowpea (Vigna unguiculata L. Walp.) Developed through γ Irradiation for Nitrogen Fixation Characters. Journalofnuclearagricultureandbiology, 31, 94-98.
[46]
Sreeharsha, R.V., Mudalkar, S., Sengupta, D., Unnikrishnan, D.K. and Reddy, A.R. (2018) Mitigation of Drought-Induced Oxidative Damage by Enhanced Carbon Assimilation and an Efficient Antioxidative Metabolism under High CO2 Environment in Pigeonpea (Cajanus cajan L.). PhotosynthesisResearch, 139, 425-439. https://doi.org/10.1007/s11120-018-0586-9
[47]
Maxwell, K. and Johnson, G.N. (2000) Chlorophyll Fluorescence—A Practical Guide. JournalofExperimentalBotany, 51, 659-668. https://doi.org/10.1093/jexbot/51.345.659
[48]
Sellapillaibanumathi, L., Dhanarajan, A., Raina, A. and Ganesan, A. (2021) Effects of γ Radiations on Morphological and Physiological Traits of Finger Millet (Eleusine coracana (L.) Gaertn.). PlantScienceToday, 9, 89-95. https://doi.org/10.14719/pst.1142
[49]
Ruban, A.V. (2016) Nonphotochemical Chlorophyll Fluorescence Quenching: Mechanism and Effectiveness in Protecting Plants from Photodamage. Plant Physiology, 170, 1903-1916. https://doi.org/10.1104/pp.15.01935
[50]
Fernández-Calleja, M., Monteagudo, A., Casas, A.M., Boutin, C., Pin, P.A., Morales, F., et al. (2020) Rapid On-Site Phenotyping via Field Fluorimeter Detects Differences in Photosynthetic Performance in a Hybrid—Parent Barley Germplasm Set. Sensors, 20, Article 1486. https://doi.org/10.3390/s20051486
[51]
Jin, C., Zha, T., Bourque, C.P.-., Liu, P., Jia, X., Tian, Y., et al. (2022) Key Stress Indicators from Chlorophyll Fluorescence in Five Desert Plant Species. EcologicalIndicators, 145, Article ID: 109679. https://doi.org/10.1016/j.ecolind.2022.109679
[52]
Kalaji, H.M., Jajoo, A., Oukarroum, A., Brestic, M., Zivcak, M., Samborska, I.A., et al. (2016) Chlorophyll a Fluorescence as a Tool to Monitor Physiological Status of Plants under Abiotic Stress Conditions. Acta Physiologiae Plantarum, 38, Article No. 102. https://doi.org/10.1007/s11738-016-2113-y
[53]
Sharma, R., Chaudhary, L., Kumar, M., Yadav, R., Devi, U., Amit, et al. (2022) Phenotypic Diversity Analysis of Lens culinaris Medik. Accessions for Selection of Superior Genotypes. Sustainability, 14, Article 5982. https://doi.org/10.3390/su14105982
[54]
Raina, A., Laskar, R.A., Wani, M.R., Jan, B.L., Ali, S. and Khan, S. (2022) γ Rays and Sodium Azide Induced Genetic Variability in High-Yielding and Biofortified Mutant Lines in Cowpea [Vigna unguiculata (L.) Walp.]. FrontiersinPlantScience, 13, Article 911049. https://doi.org/10.3389/fpls.2022.911049
[55]
Shin, J.M., Kim, B.K., Seo, S.G., Jeon, S.B., Kim, J.S., Jun, B., Kang, S.Y., Lee, J.S., Chung, M.N. and Kim, S.H. (2011) Mutation Breeding of Sweet Potato by γ-Ray Radiation. AfricanJournalofAgriculturalResearch, AcademicJournals, 6, 1447-1454. https://doi.org/10.5897/AJAR10.936.
[56]
Mohammadi, S.A. and Prasanna, B.M. (2003) Analysis of Genetic Diversity in Crop Plants—Salient Statistical Tools and Considerations. CropScience, 43, 1235-1248. https://doi.org/10.2135/cropsci2003.1235
[57]
Nikièma, M.P., Yonli, D., Yanogo, H.Y.A., Ouédraogo, N., Traoré, H., Sawadogo, M. and Hingane, A.J. (2023) Induced Mutagenesis for Enhancing Genetic Variability and Agronomic Performance in Sorghum Varieties for Burkina Faso. Annals of PlantSciences, 12, 5895-5911. http://dx.doi.org/10.21746/aps.2023.12.7.3