|
天然多糖的来源、化学结构及免疫增强活性研究
|
Abstract:
多糖作为生物体内普遍存在的生物大分子,其重要性不仅体现在作为生物体结构的基础成分上,更显著地展现在其具有抗病毒、抗菌、抗肿瘤和调节血糖等多样的生物活性上。众多研究成果表明天然多糖因其独特的生物活性,正逐步在药物研发领域展现其广泛的应用前景。本文对具有免疫增强潜力的天然多糖的生物资源来源、化学组成和结构特征进行综述,并对天然多糖在调节肠道菌群方面的理论基础研究进行总结的基础上探讨其免疫增强的作用机制,继而展望了这一领域的发展前景和方向。经过本文的深入探讨,我们旨在为天然多糖的免疫活性研究提供坚实的理论支撑,并期望能够激发研究者们对多糖免疫调节机制更深层次研究的全新思考。本文不仅对多糖在增强机体免疫力方面的潜在作用进行梳理,还揭示了其作为天然产物的独特优势,为未来的研究提供了新的方向。
Polysaccharides, as ubiquitous biological macromolecules, play a crucial role not only as fundamental components of organism structures but also in various physiological activities such as antiviral, antibacterial, anti-tumor effects and blood glucose regulation. Extensive research has demonstrated that natural polysaccharides possess unique biological activities, gradually revealing their broad application prospects in drug research and development. In this review, we comprehensively summarize the biological resources, chemical composition, and structural characteristics of natural polysaccharides with immune-enhancing potential. Furthermore, we delve into the mechanisms underlying immune enhancement and focus on the theoretical basis of natural polysaccharides in regulating intestinal flora. Additionally, we prospectively discuss future directions for development in this field. The aim of this paper is to provide a solid theoretical foundation for studying the immune activity of natural polysaccharides while stimulating novel insights into the deeper understanding of their immune regulation mechanisms. This review not only summarizes the potential role of polysaccharides in enhancing immunity but also highlights their unique advantages as natural products—providing new avenues for future research.
[1] | Huang, F., Zhang, R., Liu, Y., Xiao, J., Liu, L., Wei, Z., et al. (2016) Dietary Litchi Pulp Polysaccharides Could Enhance Immunomodulatory and Antioxidant Effects in Mice. International Journal of Biological Macromolecules, 92, 1067-1073. https://doi.org/10.1016/j.ijbiomac.2016.08.021 |
[2] | Raje, N. and Dinakar, C. (2015) Overview of Immunodeficiency Disorders. Immunology and Allergy Clinics of North America, 35, 599-623. https://doi.org/10.1016/j.iac.2015.07.001 |
[3] | Feng, L., Han, N., Han, Y., Shang, M., Liang, T., Liu, Z., et al. (2024) Structural Analysis of a Soluble Polysaccharide GSPA-0.3 from the Root of Panax ginseng C. A. Meyer and Its Adjuvant Activity with Mechanism Investigation. Carbohydrate Polymers, 326, Article ID: 121591. https://doi.org/10.1016/j.carbpol.2023.121591 |
[4] | Zhang, X., Liu, Z., Zhong, C., Pu, Y., Yang, Z. and Bao, Y. (2021) Structure Characteristics and Immunomodulatory Activities of a Polysaccharide RGRP-1b from Radix Ginseng Rubra. International Journal of Biological Macromolecules, 189, 980-992. https://doi.org/10.1016/j.ijbiomac.2021.08.176 |
[5] | Li, Y., Zheng, J., Wang, Y., Yang, H., Cao, L., Gan, S., et al. (2023) Immuno-Stimulatory Activity of Astragalus Polysaccharides in Cyclophosphamide-Induced Immunosuppressed Mice by Regulating Gut Microbiota. International Journal of Biological Macromolecules, 242, Article ID: 124789. https://doi.org/10.1016/j.ijbiomac.2023.124789 |
[6] | Aipire, A., Mahabati, M., Cai, S., Wei, X., Yuan, P., Aimaier, A., et al. (2020) The Immunostimulatory Activity of Polysaccharides from Glycyrrhiza uralensis. PeerJ, 8, e8294. https://doi.org/10.7717/peerj.8294 |
[7] | Wang, Y., Sun, M., Jin, H., Yang, J., Kang, S., Liu, Y., et al. (2021) Effects of Lycium barbarum Polysaccharides on Immunity and the Gut Microbiota in Cyclophosphamide-Induced Immunosuppressed Mice. Frontiers in Microbiology, 12, Article 701566. https://doi.org/10.3389/fmicb.2021.701566 |
[8] | Ding, Y., Yan, Y., Chen, D., Ran, L., Mi, J., Lu, L., et al. (2019) Modulating Effects of Polysaccharides from the Fruits of Lycium barbarumon the Immune Response and Gut Microbiota in Cyclophosphamide-Treated Mice. Food & Function, 10, 3671-3683. https://doi.org/10.1039/c9fo00638a |
[9] | Zhang, Y., Tang, Y., Cai, L., He, J., Chen, L., Ouyang, K., et al. (2023) Chimonanthus Nitens Oliv Polysaccharides Modulate Immunity and Gut Microbiota in Immunocompromised Mice. Oxidative Medicine and Cellular Longevity, 2023, Article ID: 6208680. https://doi.org/10.1155/2023/6208680 |
[10] | Liu, W., Yan, R. and Zhang, L. (2019) Dendrobium Sonia Polysaccharide Regulates Immunity and Restores the Dysbiosis of the Gut Microbiota of the Cyclophosphamide-Induced Immunosuppressed Mice. Chinese Journal of Natural Medicines, 17, 600-607. https://doi.org/10.1016/s1875-5364(19)30062-7 |
[11] | Li, M., Yue, H., Wang, Y., Guo, C., Du, Z., Jin, C., et al. (2020) Intestinal Microbes Derived Butyrate Is Related to the Immunomodulatory Activities of Dendrobium Officinale Polysaccharide. International Journal of Biological Macromolecules, 149, 717-723. https://doi.org/10.1016/j.ijbiomac.2020.01.305 |
[12] | Qu, D., Lian, S., Hu, H., Sun, W. and Si, H. (2022) Characterization and Macrophages Immunomodulatory Activity of Two Water-Soluble Polysaccharides from Abrus cantoniensis. Frontiers in Nutrition, 9, Article 969512. https://doi.org/10.3389/fnut.2022.969512 |
[13] | Qu, D., Hu, H., Lian, S., Sun, W. and Si, H. (2022) The Protective Effects of Three Polysaccharides from Abrus cantoniensis against Cyclophosphamide-Induced Immunosuppression and Oxidative Damage. Frontiers in Veterinary Science, 9, Article 870042. https://doi.org/10.3389/fvets.2022.870042 |
[14] | Lv, Y., Yang, Y., Chen, Y., Wang, D., Lei, Y., Pan, M., et al. (2024) Structural Characterization and Immunomodulatory Activity of a Water-Soluble Polysaccharide from Poria cocos. International Journal of Biological Macromolecules, 261, Article ID: 129878. https://doi.org/10.1016/j.ijbiomac.2024.129878 |
[15] | Liu, F., Zhang, L., Feng, X., Ibrahim, S.A., Huang, W. and Liu, Y. (2021) Immunomodulatory Activity of Carboxymethyl Pachymaran on Immunosuppressed Mice Induced by Cyclophosphamide. Molecules, 26, Article 5733. https://doi.org/10.3390/molecules26195733 |
[16] | Lin, C., Zhang, H., Chen, L., Fang, Y. and Chen, J. (2021) Immunoregulatory Function of Dictyophora echinovolvata Spore Polysaccharides in Immunocompromised Mice Induced by Cyclophosphamide. Open Life Sciences, 16, 620-629. https://doi.org/10.1515/biol-2021-0055 |
[17] | Tian, B., Liu, R., Xu, T., Cai, M., Mao, R., Huang, L., et al. (2023) Modulating Effects of Hericium erinaceus Polysaccharides on the Immune Response by Regulating Gut Microbiota in Cyclophosphamide‐Treated Mice. Journal of the Science of Food and Agriculture, 103, 3050-3064. https://doi.org/10.1002/jsfa.12404 |
[18] | Wan, P., Liu, H., Ding, M., Zhang, K., Shang, Z., Wang, Y., et al. (2023) Physicochemical Characterization, Digestion Profile and Gut Microbiota Regulation Activity of Intracellular Polysaccharides from Chlorella zofingiensis. International Journal of Biological Macromolecules, 253, Article ID: 126881. https://doi.org/10.1016/j.ijbiomac.2023.126881 |
[19] | Wang, C., Huang, L., Huang, Y., Tian, X. and Liu, J. (2023) Study on Immunoregulatory Effects of Fucoidan from Sargassum graminifolium in Vivo and Immunoactivation Activity of Its Fecal Fermentation Products Using Co-Culture Model. Molecules, 28, Article 7794. https://doi.org/10.3390/molecules28237794 |
[20] | Liu, Y., Ge, K., Yu, Z., Li, X., Wu, X., Wang, Y., et al. (2020) Activation of NLRP3 Inflammasome in RAW 264.7 Cells by Polysaccharides Extracted from Grateloupia livida (Harv.) Yamada. International Immunopharmacology, 85, Article ID: 106630. https://doi.org/10.1016/j.intimp.2020.106630 |
[21] | 曲航, 吴奕, 刘常武, 等. 鲍鱼多糖的大孔树脂纯化工艺及其免疫调节活性分析[J]. 食品工业科技, 2024, 45(13): 186-194. |
[22] | Zhao, Y., Yan, Y., Zhou, W., Chen, D., Huang, K., Yu, S., et al. (2020) Effects of Polysaccharides from Bee Collected Pollen of Chinese Wolfberry on Immune Response and Gut Microbiota Composition in Cyclophosphamide-Treated Mice. Journal of Functional Foods, 72, Article ID: 104057. https://doi.org/10.1016/j.jff.2020.104057 |
[23] | Zhu, X., Guo, R., Su, X., Shang, K., Tan, C., Ma, J., et al. (2023) Immune-Enhancing Activity of Polysaccharides and Flavonoids Derived from Phellinus Igniarius Yash. Frontiers in Pharmacology, 14, Article 1124607. https://doi.org/10.3389/fphar.2023.1124607 |
[24] | Jing, Y., Zhang, Y., Yan, M., Zhang, R., Hu, B., Sun, S., et al. (2023) Structural Characterization of a Heteropolysaccharide from the Fruit of Crataegus Pinnatifida and Its Bioactivity on the Gut Microbiota of Immunocompromised Mice. Food Chemistry, 413, Article ID: 135658. https://doi.org/10.1016/j.foodchem.2023.135658 |
[25] | Deng, C., Fu, H., Teng, L., Hu, Z., Xu, X., Chen, J., et al. (2013) Anti-Tumor Activity of the Regenerated Triple-Helical Polysaccharide from Dictyophora indusiata. International Journal of Biological Macromolecules, 61, 453-458. https://doi.org/10.1016/j.ijbiomac.2013.08.007 |
[26] | Lee, J.S. (2009) Study of Macrophage Activation and Structural Characteristics of Purified Polysaccharides from the Fruiting Body of Hericium erinaceus. Journal of Microbiology and Biotechnology, 19, 951-959. https://doi.org/10.4014/jmb.0901.013 |
[27] | 王莹, 金红宇, 李耀磊, 等. 不同分子量枸杞多糖对RAW264.7巨噬细胞的免疫调节作用[J]. 中国新药杂志, 2021, 30(12): 1079-1086. |
[28] | Ferreira, S.S., Passos, C.P., Madureira, P., Vilanova, M. and Coimbra, M.A. (2015) Structure-Function Relationships of Immunostimulatory Polysaccharides: A Review. Carbohydrate Polymers, 132, 378-396. https://doi.org/10.1016/j.carbpol.2015.05.079 |
[29] | 陈赛红, 衣伟萌, 闵思明, 等. 太子参参须提取物对免疫抑制小鼠的免疫调节作用[J]. 中国兽医杂志, 2023, 59(6): 138-143. |
[30] | 孙萌, 王文地, 丽妍, 等. 基于斑马鱼模型的防风多糖调节免疫作用机制研究[J]. 中国中药杂志, 2023, 48(7): 1916-1926. |
[31] | 张雪, 赵苑伶, 陈林珍, 等. 基于斑马鱼模型探究多花黄精多糖的免疫调节作用[J]. 世界中医药, 2023, 18(6): 761-765, 772. |
[32] | 崔雪娇, 佟潇禹, 张彦龙, 等. 刺五加果多糖对RAW264.7细胞免疫调节作用[J]. 生物技术, 2022, 32(2): 182-187, 194. |
[33] | Zhao, M., Shi, W., Chen, X., Liu, Y., Yang, Y. and Kong, X. (2022) Regulatory Effects of Auricularia Cornea Var. Li. Polysaccharides on Immune System and Gut Microbiota in Cyclophosphamide-Induced Mice. Frontiers in Microbiology, 13, Article 1056410. https://doi.org/10.3389/fmicb.2022.1056410 |
[34] | 翟旭楠, 刘永武, 张娜, 等. 刺五加多糖对小鼠免疫功能的影响[J]. 中医药信息, 2020, 37(6): 42-45. |
[35] | 王小兰, 段鹏飞, 杨梦, 等. 生地黄多糖对环磷酰胺诱导的免疫抑制小鼠的免疫调节作用研究[J]. 上海中医药大学学报, 2021, 35(1): 55-60, 92. |
[36] | Deng, X., Fu, Y., Luo, S., Luo, X., Wang, Q., Hu, M., et al. (2019) Polysaccharide from Radix Codonopsis Has Beneficial Effects on the Maintenance of T-Cell Balance in Mice. Biomedicine & Pharmacotherapy, 112, Article ID: 108682. https://doi.org/10.1016/j.biopha.2019.108682 |
[37] | 董一鑫, 陈洁, 于萍, 等. 竹节参多糖的结构表征及体外免疫活性研究[J]. 中药材, 2023, 46(11): 2754-2759. |
[38] | Wei, J., Wang, B., Chen, Y., Wang, Q., Ahmed, A.F., Zhang, Y., et al. (2022) The Immunomodulatory Effects of Active Ingredients from Nigella sativa in RAW264.7 Cells through NF-κB/mapk Signaling Pathways. Frontiers in Nutrition, 9, Article 899797. https://doi.org/10.3389/fnut.2022.899797 |
[39] | Zou, Y., Zhang, Y., Fu, Y., Inngjerdingen, K., Paulsen, B., Feng, B., et al. (2019) A Polysaccharide Isolated from Codonopsis pilosula with Immunomodulation Effects Both in Vitro and in Vivo. Molecules, 24, Article 3632. https://doi.org/10.3390/molecules24203632 |
[40] | 代道蝶, 刘梦鸽, 孙庆文, 等. 蜘蛛果多糖对RAW264.7免疫调节作用[J]. 生物技术, 2024, 34(3): 376-381. |
[41] | Wang, X., Qu, Y., Wang, Y., Wang, X., Xu, J., Zhao, H., et al. (2022) β-1, 6-glucan from Pleurotus eryngii Modulates the Immunity and Gut Microbiota. Frontiers in Immunology, 13, Article 859923. https://doi.org/10.3389/fimmu.2022.859923 |
[42] | Zhang, W., Park, H., Yadav, D., Hwang, J., An, E., Eom, H., et al. (2021) Comparison of Human Peripheral Blood Dendritic Cell Activation by Four Fucoidans. International Journal of Biological Macromolecules, 174, 477-484. https://doi.org/10.1016/j.ijbiomac.2021.01.155 |
[43] | Feng, S., Yang, X., Weng, X., Wang, B. and Zhang, A. (2021) Aqueous Extracts from Cultivated Cistanche deserticola Y.C. Ma as Polysaccharide Adjuvant Promote Immune Responses via Facilitating Dendritic Cell Activation. Journal of Ethnopharmacology, 277, Article ID: 114256. https://doi.org/10.1016/j.jep.2021.114256 |
[44] | Rooks, M.G. and Garrett, W.S. (2016) Gut Microbiota, Metabolites and Host Immunity. Nature Reviews Immunology, 16, 341-352. https://doi.org/10.1038/nri.2016.42 |
[45] | Gareau, M.G., Sherman, P.M. and Walker, W.A. (2010) Probiotics and the Gut Microbiota in Intestinal Health and Disease. Nature Reviews Gastroenterology & Hepatology, 7, 503-514. https://doi.org/10.1038/nrgastro.2010.117 |
[46] | Fink, L.N., Zeuthen, L.H., Christensen, H.R., Morandi, B., Frokiaer, H. and Ferlazzo, G. (2007) Distinct Gut-Derived Lactic Acid Bacteria Elicit Divergent Dendritic Cell-Mediated NK Cell Responses. International Immunology, 19, 1319-1327. https://doi.org/10.1093/intimm/dxm103 |
[47] | Delcenserie, V., Martel, D., Lamoureux, M., et al. (2008) Immunomodulatory Effects of Probiotics in the Intestinal Tract. Current Issues in Molecular Biology, 10, 37-53. |
[48] | Dargahi, N., Johnson, J., Donkor, O., Vasiljevic, T. and Apostolopoulos, V. (2019) Immunomodulatory Effects of Probiotics: Can They Be Used to Treat Allergies and Autoimmune Diseases? Maturitas, 119, 25-38. https://doi.org/10.1016/j.maturitas.2018.11.002 |
[49] | Ying, M., Yu, Q., Zheng, B., Wang, H., Wang, J., Chen, S., et al. (2020) Cultured Cordyceps Sinensis Polysaccharides Modulate Intestinal Mucosal Immunity and Gut Microbiota in Cyclophosphamide-Treated Mice. Carbohydrate Polymers, 235, Article ID: 115957. https://doi.org/10.1016/j.carbpol.2020.115957 |
[50] | Zhou, F., Jiang, X., Wang, T., Zhang, B. and Zhao, H. (2018) Lycium barbarum Polysaccharide (LBP): A Novel Prebiotics Candidate for Bifidobacterium and Lactobacillus. Frontiers in Microbiology, 9, Article 1034. https://doi.org/10.3389/fmicb.2018.01034 |
[51] | Koh, A., De Vadder, F., Kovatcheva-Datchary, P. and Bäckhed, F. (2016) From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell, 165, 1332-1345. https://doi.org/10.1016/j.cell.2016.05.041 |
[52] | Peng, L., Li, Z., Green, R.S., Holzmanr, I.R. and Lin, J. (2009) Butyrate Enhances the Intestinal Barrier by Facilitating Tight Junction Assembly via Activation of AMP-Activated Protein Kinase in Caco-2 Cell Monolayers. The Journal of Nutrition, 139, 1619-1625. https://doi.org/10.3945/jn.109.104638 |
[53] | Li, P., Ge, J. and Li, H. (2019) Lysine Acetyltransferases and Lysine Deacetylases as Targets for Cardiovascular Disease. Nature Reviews Cardiology, 17, 96-115. https://doi.org/10.1038/s41569-019-0235-9 |
[54] | Ren, D., Li, S., Lin, H., Xia, Y., Li, Z., Bo, P., et al. (2022) Panax quinquefolius Polysaccharides Ameliorate Antibiotic-Associated Diarrhoea Induced by Lincomycin Hydrochloride in Rats via the MAPK Signaling Pathways. Journal of Immunology Research, 2022, Article ID: 4126273. https://doi.org/10.1155/2022/4126273 |
[55] | Cui, L., Guan, X., Ding, W., Luo, Y., Wang, W., Bu, W., et al. (2021) Scutellaria baicalensis Georgi Polysaccharide Ameliorates DSS-Induced Ulcerative Colitis by Improving Intestinal Barrier Function and Modulating Gut Microbiota. International Journal of Biological Macromolecules, 166, 1035-1045. https://doi.org/10.1016/j.ijbiomac.2020.10.259 |
[56] | 查苏娜, 苏日娜, 齐和日玛, 等. 刺玫根多糖对环磷酰胺诱导的免疫抑制小鼠的免疫调节作用[J]. 天然产物研究与开发, 2024, 36(2): 196-205, 292. |
[57] | Leung, M.Y.K., Liu, C., Koon, J.C.M. and Fung, K.P. (2006) Polysaccharide Biological Response Modifiers. Immunology Letters, 105, 101-114. https://doi.org/10.1016/j.imlet.2006.01.009 |
[58] | Yang, H., Song, X., Wei, Z., Xia, C., Wang, J., Shen, L., et al. (2020) TLR4/MyD88/NF-κB Signaling in the Rostral Ventrolateral Medulla Is Involved in the Depressor Effect of Candesartan in Stress-Induced Hypertensive Rats. ACS Chemical Neuroscience, 11, 2978-2988. https://doi.org/10.1021/acschemneuro.0c00029 |
[59] | Zhang, Q., Liu, M., Li, L., Chen, M., Puno, P.T., Bao, W., et al. (2021) Cordyceps Polysaccharide Marker CCP Modulates Immune Responses via Highly Selective TLR4/MyD88/p38 Axis. Carbohydrate Polymers, 271, Article ID: 118443. https://doi.org/10.1016/j.carbpol.2021.118443 |
[60] | Zeng, F., Li, Y., Zhang, X., Shen, L., Zhao, X., Beta, T., et al. (2024) Immune Regulation and Inflammation Inhibition of Arctium Lappa L. Polysaccharides by TLR4/NF-κB Signaling Pathway in Cells. International Journal of Biological Macromolecules, 254, Article ID: 127700. https://doi.org/10.1016/j.ijbiomac.2023.127700 |
[61] | Chen, D., Chen, G., Ding, Y., Wan, P., Peng, Y., Chen, C., et al. (2019) Polysaccharides from the Flowers of Tea (Camellia sinensis L.) Modulate Gut Health and Ameliorate Cyclophosphamide-Induced Immunosuppression. Journal of Functional Foods, 61, Article ID: 103470. https://doi.org/10.1016/j.jff.2019.103470 |
[62] | Tan, S. (2012) The Leucocyte β2(CD18) Integrins: The Structure, Functional Regulation and Signalling Properties. Bioscience Reports, 32, 241-269. https://doi.org/10.1042/bsr20110101 |
[63] | Lan, H., Cheng, Y., Mu, J., Huang, Y., Chen, H., Zhao, L., et al. (2021) Glucose-rich Polysaccharide from Dried ‘Shixia’ Longan Activates Macrophages through Ca2+ and CR3-Mediated MAPKs and PI3K-AKT Pathways. International Journal of Biological Macromolecules, 167, 845-853. https://doi.org/10.1016/j.ijbiomac.2020.11.040 |
[64] | Talapphet, N., Palanisamy, S., Li, C., Ma, N., Prabhu, N.M. and You, S. (2021) Polysaccharide Extracted from Taraxacum Platycarpum Root Exerts Immunomodulatory Activity via MAPK and NF-κB Pathways in RAW264.7 Cells. Journal of Ethnopharmacology, 281, Article ID: 114519. https://doi.org/10.1016/j.jep.2021.114519 |
[65] | Deng, C., Fu, H., Shang, J., Chen, J. and Xu, X. (2018) Dectin-1 Mediates the Immunoenhancement Effect of the Polysaccharide from Dictyophora indusiata. International Journal of Biological Macromolecules, 109, 369-374. https://doi.org/10.1016/j.ijbiomac.2017.12.113 |
[66] | Qiao, D., He, X., Wei, C., Xia, L. and Bao, L. (2016) Effects of Hyriopsis cumingii Polysaccharides on Mice Immunologic Receptor, Transcription Factor, and Cytokine. Journal of Food Science, 81, H1288-H1294. https://doi.org/10.1111/1750-3841.13288 |
[67] | Kang, H., Lee, M., Lee, J., Choi, Y. and Choi, Y. (2016) Enzymatically-Processed Wheat Bran Enhances Macrophage Activity and Has in Vivo Anti-Inflammatory Effects in Mice. Nutrients, 8, Article 188. https://doi.org/10.3390/nu8040188 |