全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于支持向量机的多因子融合量价数据的选股策略的研究
Research on Stock Selection Strategy with the Fusion of Data of Multi-Factor, Volume and Price Based on Support Vector Machine

DOI: 10.12677/ecl.2024.133896, PP. 7271-7281

Keywords: SVM算法,量化投资,多因子选股模型,SuperMind平台
Support Vector Machine (SVM)
, Quantitative Investment, Multi-Factor Model of Stock Selection, SuperMind Platform

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对中证1000成分股的投资策略构建,提出了基于支持向量机的多因子融合量价数据选股策略,应用于实时或模拟市场数据的回测中,以评估策略的有效性。本文对基于支持向量机的多因子选股模型进行改进,将量价数据融合到选股模型中,在多因子选股模型筛选出的股票基础上,进一步融合量价数据再次筛选,以期望获得更优的收益。回测结果表明,加入量价数据与未加入量价数据的模型对比,策略收益率提高了4.83%,策略年化收益率提高了11.43%,策略累积收益率与夏普比率显著优于多因子选股策略,最大回撤比之减小或者略高,预测涨跌更为接近实际股票涨跌趋势。实验结果表明:基于支持向量机的多因子融合量价数据选股策略应用在量化投资上,是十分有效的。
In response to the construction of investment strategy for the constituent stocks of China Securities 1000, a stock selection strategy with the fusion of data of multi-factor, volume and price based on support vector machine is proposed which is applied to real-time or simulated market data backtesting, in order to evaluate the effectiveness of the strategy. We improve the multi-factor model of stock selection based on support vector machine, integrate the volume and price data into the model of stock selection, and further fuse the volume and price data to screen the stocks selected by the multi-factor model of stock selection to obtain more optimal returns. According to the backtest results, compared with the model with or without the addition of volume and price data and the model, the strategy return rate increases by 4.83%, the strategy annual return rate increases by 11.43%, the strategy cumulative return to sharp ratio is significantly better than that of the multi-factor stock selection strategy, and the maximum retracement ratio decreases or is slightly higher. The improved forecast moves more closely to the actual trend of stock movements. The results show that the strategy of stock selection with the fusion of data of multi-factor volume and price based on support vector machine is very effective in quantitative investment.

References

[1]  王春雨. 基于稳健回归和收益-风险模型的股票增强指数研究[D]: [硕士学位论文]. 济南: 山东大学, 2023.
[2]  杜曼茹. 基于核主成分分析和模糊C均值聚类算法的量化选股研究[D]: [硕士学位论文]. 南京: 南京理工大学, 2020.
[3]  黄志辉. 基于卷积神经网络的量化选股模型研究[D]: [硕士学位论文]. 杭州: 浙江大学, 2019.
[4]  李聪. 基于LSTM神经网络股价预测的量化投资策略研究[D]: [硕士学位论文]. 昆明: 云南财经大学, 2022.
[5]  李梦圆. 基于决策树的多因子选股模型研究[J]. 生产力研究, 2024(2): 145-149.
[6]  李羊骥. 基于机器学习的A股基本面量化投资策略研究[J]. 金融客, 2023(8): 34-36.
[7]  左梦瑶. 基于机器学习的因子选股与量化择时策略研究[D]: [硕士学位论文]. 广州: 广州大学, 2023.
[8]  孙博文. 基于机器学习算法的选股与择时量化投资策略研究[D]: [硕士学位论文]. 济南: 山东大学, 2023.
[9]  彭嘉晨. 基于支持向量机的多因子选股策略研究[D]: [硕士学位论文]. 广州: 广东财经大学, 2023.
[10]  吴丽萍. 基于随机森林的动态多因子量化策略设计[D]: [硕士学位论文]. 广州: 广东财经大学, 2023.
[11]  Jensen, M.C. (1968) The Performance of Mutual Funds in the Period 1945-1964. Harvard University.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133