全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

以中信海直为例的不同时间维度股票预测研究
Research on Stock Forecasting in Different Time Dimensions with CITIC Haizhi as an Example

DOI: 10.12677/ecl.2024.133863, PP. 7003-7011

Keywords: 股票预测,深度学习,统计模型
Stock Forecast
, Deep Learning, Statistical Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

本研究旨在评估多种机器学习、深度学习和统计分析技术在股票价格预测领域的效果。通过选择中信海直(股票代码:000099)的1分钟、15分钟和日线数据,应用ARIMA、LSTM、RNN和CNN等模型进行深入分析。我们通过计算均方根误差(RMSE)、平均绝对误差(MAE)和确定系数(R2)等指标来评估模型性能,发现使用高时间密度数据(如1分钟数据)的预测精度明显优于使用低时间密度数据(如日线数据)。具体表现在较低的MAE值和偏差,这说明模型在处理更频繁的数据时能够更准确地捕捉股价变动。本研究结果不仅证实了在股价预测中数据的时间密度是一个关键因素,也为投资者提供了更准确的市场趋势预测,帮助他们做出更明智的投资决策,从而可能最大化投资回报。
This study aims to evaluate the effectiveness of various machine learning, deep learning, and statistical analysis techniques in the field of stock price prediction. By selecting one-minute, fifteen-minute, and daily data from CITIC Haizhi (stock code: 000099), we conducted an in-depth analysis using models such as ARIMA, LSTM, RNN, and CNN. We assessed the performance of these models by calculating metrics such as Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and the coefficient of determination (R2). The results reveal that the predictive accuracy using high-frequency data (such as one-minute intervals) significantly surpasses that using low-frequency data (such as daily intervals). This is evident in the lower MAE values and smaller deviations, indicating that the models can more accurately capture stock price movements with more frequent data inputs. The findings not only confirm that data frequency is a critical factor in stock price prediction but also provide investors with more accurate market trend forecasts, aiding them in making smarter investment decisions and potentially maximizing investment returns.

References

[1]  Mintarya, L.N., Halim, J.N.M., Angie, C., Achmad, S. and Kurniawan, A. (2023) Machine Learning Approaches in Stock Market Prediction: A Systematic Literature Review. Procedia Computer Science, 216, 96-102.
https://doi.org/10.1016/j.procs.2022.12.115
[2]  Gandhmal, D.P. and Kumar, K. (2019) Systematic Analysis and Review of Stock Market Prediction Techniques. Computer Science Review, 34, Article ID: 100190.
https://doi.org/10.1016/j.cosrev.2019.08.001
[3]  Htun, H.H., Biehl, M. and Petkov, N. (2023) Survey of Feature Selection and Extraction Techniques for Stock Market Prediction. Financial Innovation, 9, Article No. 26.
https://doi.org/10.1186/s40854-022-00441-7
[4]  Saxena, U.R., Sharma, P. and Gupta, G. (2022) Comprehensive Study of Machine Learning Algorithms for Stock Market Prediction during Covid-19. Journal of Computers, Mechanical and Management, 1, 14-21.
https://doi.org/10.57159/gadl.jcmm.1.2.22021
[5]  Usmani, S. and Shamsi, J.A. (2023) LSTM Based Stock Prediction Using Weighted and Categorized Financial News. PLOS ONE, 18, e0282234.
https://doi.org/10.1371/journal.pone.0282234
[6]  Ma, Y., Mao, R., Lin, Q., Wu, P. and Cambria, E. (2023) Multi-Source Aggregated Classification for Stock Price Movement Prediction. Information Fusion, 91, 515-528.
https://doi.org/10.1016/j.inffus.2022.10.025
[7]  Chaudhari, K. and Thakkar, A. (2023) Neural Network Systems with an Integrated Coefficient of Variation-Based Feature Selection for Stock Price and Trend Prediction. Expert Systems with Applications, 219, Article ID: 119527.
https://doi.org/10.1016/j.eswa.2023.119527
[8]  Zhang, J., Ye, L. and Lai, Y. (2023) Stock Price Prediction Using CNN-BiLSTM-Attention Model. Mathematics, 11, Article No. 1985.
https://doi.org/10.3390/math11091985
[9]  Lu, M. and Xu, X. (2024) TRNN: An Efficient Time-Series Recurrent Neural Network for Stock Price Prediction. Information Sciences, 657, Article ID: 119951.
https://doi.org/10.1016/j.ins.2023.119951
[10]  Chaudhari, K. and Thakkar, A. (2023) Data Fusion with Factored Quantization for Stock Trend Prediction Using Neural Networks. Information Processing & Management, 60, Article ID: 103293.
https://doi.org/10.1016/j.ipm.2023.103293

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133