全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

我国科技上市公司财务危机预警研究——基于修正的Z-Score模型
Research on the Early Warning of Financial Crisis of China’s Science and Technology Listed Companies—Based on a Modified Z-Score Model

DOI: 10.12677/ecl.2024.133848, PP. 6873-6883

Keywords: 财务危机预警,Z-Score模型,风险管理
Financial Crisis Warning
, Z-Score Model, Risk Management

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来,随着科技的发展,科技企业迅速发展壮大,但复杂的内外部环境使得科技企业在经营过程中面临诸多风险。为了我国科技上市公司健康、持续发展的目标,需对其进行财务危机预警研究。本文利用SPSS软件对400家科技上市公司的21个财务指标变量进行筛选,确定模型变量和判别系数,建立科技上市公司修正的Z-Score预警模型,运用建模样本、检验样本对所建模型的适用性进行检验,可以发现,该模型对我国科技上市公司财务危机的发生具有比较好的警示作用。
In recent years, with the development of technology, technology companies have grown rapidly. However, the complex internal and external environment has led to numerous risks for these companies in their operations. In order to achieve the goal of healthy and sustainable development for our country’s technology listed companies, it is necessary to conduct research on financial crisis warning. This article utilizes SPSS software to screen 21 financial indicator variables of 400 technology listed companies, determine model variables and discriminatory factors, and establish a modified Z-Score warning model for technology listed companies. The applicability of the model is tested using modeling and testing samples, and it is found that the model has a good warning effect on the occurrence of financial crises in China’s technology listed companies.

References

[1]  Argenti, J. (1976) Corporate Planning and Corporate Collapse. Long Range Planning, 9, 12-17.
https://doi.org/10.1016/0024-6301(76)90006-6
[2]  Agrawal, A. and Knoeber, C.R. (2001) Do Some Outside Directors Play a Political Role? The Journal of Law and Economics, 44, 179-198.
https://doi.org/10.1086/320271
[3]  Dyck, A. and Zingales, L. (2004) Private Benefits of Control: An International Comparison. The Journal of Finance, 59, 537-600.
https://doi.org/10.1111/j.1540-6261.2004.00642.x
[4]  Beasley, M.S. (1996) An Empirical Analysis of the Relation between the Board of Director Composition and Financial Statement Fraud. The Accounting Review, 71, 443-465.
[5]  Uzun, H., Szewczyk, S.H. and Varma, R. (2004) Board Composition and Corporate Fraud. Financial Analysts Journal, 60, 33-43.
https://doi.org/10.2469/faj.v60.n3.2619
[6]  Gorshunov, M.A., Armenakis, A.A., Harris, S.G. and Walker, H.J. (2021) Quad-Qualified Audit Committee Director: Implications for Monitoring and Reducing Financial Corruption. Journal of Corporate Finance, 66, Article 101854.
https://doi.org/10.1016/j.jcorpfin.2020.101854
[7]  Almamy, J., Aston, J. and Ngwa, L.N. (2016) An Evaluation of Altman’s Z-Score Using Cash Flow Ratio to Predict Corporate Failure amid the Recent Financial Crisis: Evidence from the UK. Journal of Corporate Finance, 36, 278-285.
https://doi.org/10.1016/j.jcorpfin.2015.12.009
[8]  Kim, S.Y. and Upneja, A. (2014) Predicting Restaurant Financial Distress Using Decision Tree and Adaboosted Decision Tree Models. Economic Modelling, 36, 354-362.
https://doi.org/10.1016/j.econmod.2013.10.005
[9]  Wang, G., Chen, G. and Chu, Y. (2018) A New Random Subspace Method Incorporating Sentiment and Textual Information for Financial Distress Prediction. Electronic Commerce Research and Applications, 29, 30-49.
https://doi.org/10.1016/j.elerap.2018.03.004
[10]  Chen, M. (2011) Using a Hybrid Evolution Approach to Forecast Financial Failures for Taiwan-Listed Companies. Quantitative Finance, 14, 1047-1058.
https://doi.org/10.1080/14697688.2011.618458
[11]  Liang, D., Tsai, C.-F., Lu, H.-Y. and Chang, L. (2020) Combining Corporate Governance Indicators with Stacking Ensembles for Financial Distress Prediction. Journal of Business Research, 120, 137-146.
https://doi.org/10.1016/j.jbusres.2020.07.052
[12]  周首华, 杨济华, 王平. 论财务危机的预警分析F分数模式[J]. 会计研究, 1996(8): 44-51.
[13]  姜秀华, 孙铮. 治理弱化与财务危机: 一个预测模型[J]. 南开管理评论, 2001, 4(5): 19-25.
[14]  吕俊. 基于不同指标类型的公司财务危机征兆和预测比较研究[J]. 山西财经大学学报, 2014, 36(1): 103-113.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133