|
Nursing Science 2024
脑电图在认知功能障碍疾病早期筛查中的应用价值
|
Abstract:
认知功能障碍疾病是一种神经系统退行性疾病,起病隐匿,不易被发现,发现时多已处于痴呆阶段,而痴呆尚无有效治疗手段,因此早期对认知功能障碍疾病患者进行筛查及干预尤为重要。目前,对认知功能障碍疾病的早期筛查主要采用神经心理学测试与医学生物学相结合的方法,但无法实时反馈神经功能变化,因此探寻一种简便易行、融合客观生理指标的筛查方法势在必行。脑电图(Electroencephalogram, EEG),是一种无创的、非侵入性的、准确率较高的检测手段,可记录大脑皮层的电生理活动,对早期筛查认知功能障碍疾病具有重要意义。本文通过对既往文献进行汇总、分析,进一步明确了脑电在认知功能障碍疾病早期筛查中的价值,以期为临床工作提供新思路。
Cognitive dysfunction is a neurodegenerative disease that has an insidious onset and is difficult to detect. Most patients are already in the stage of dementia when they are discovered. Due to dementia has no effective treatment, it is especially crucial to recognize and intervene in patients with cognitive dysfunction at an early stage. Neuropsychological testing and medical biological tests are two of the current early detection procedures for cognitive dysfunction, although both have drawbacks and are not appropriate for early detection. The cerebral cortex’s electrical activity can be recorded using electroencephalography, a non-invasive, highly accurate, and reasonably priced test that is crucial for the early detection of disorders that cause cognitive dysfunction. By summarizing and analyzing prior material, the relevance of EEG in the early screening of disorders causing cognitive dysfunction is further explained in this study with the goal of generating fresh clinical research ideas.
[1] | Park, D., Kim, H.S. and Kim, J.H. (2023) The Effect of All-Cause Hospitalization on Cognitive Decline in Older Adults: A Longitudinal Study Using Databases of the National Health Insurance Service and the Memory Clinics of a Self-Run Hospital. BMC Geriatrics, 23, Article No. 61. https://doi.org/10.1186/s12877-022-03701-4 |
[2] | 中华医学会神经病学分会痴呆与认知障碍学组, 中国医师协会神经内科医师分会认知障碍疾病专业委员会. 前驱期阿尔茨海默病的简易筛查中国专家共识(2023年版) [J]. 中华神经医学杂志, 2023, 22(5): 433-444. |
[3] | 李宗姗, 魏丽丽, 桂雅星, 等. 认知功能评估量表研发与应用进展[J]. 中国现代神经疾病杂志, 2021, 21(11): 927-933. |
[4] | Ulbl, J. and Rakusa, M. (2023) The Importance of Subjective Cognitive Decline Recognition and the Potential of Molecular and Neurophysiological Biomarkers—A Systematic Review. International Journal of Molecular Sciences, 24, Article 10158. https://doi.org/10.3390/ijms241210158 |
[5] | 李梓浩, 吴美妮, 尹昌浩, 等. 脑电图在轻度认知功能障碍中的研究进展[J]. 临床荟萃, 2022, 37(8): 748-752. |
[6] | 王治国, 战莹, 张国旭, 等. β-淀粉样蛋白沉积与轻度认知障碍患者认知功能的相关性[J]. 中华老年多器官疾病杂志, 2020, 19(5): 331-335. |
[7] | Ochiishi, T., Kaku, M., Kiyosue, K., Doi, M., Urabe, T., Hattori, N., et al. (2019) New Alzheimer’s Disease Model Mouse Specialized for Analyzing the Function and Toxicity of Intraneuronal Amyloid β Oligomers. Scientific Reports, 9, Article No. 17368. https://doi.org/10.1038/s41598-019-53415-8 |
[8] | 肖小嫱, 肖军. 脑电图在阿尔茨海默病中的应用及研究进展[J]. 阿尔茨海默病及相关病杂志, 2022, 5(4): 333-336. |
[9] | Zhang, M., Liu, L., Hao, L., Yang, Q., Cao, Q. and Jiang, N. (2023) α Rhythm Wavelength of Electroencephalography Signals as a Diagnostic Biomarker for Alzheimer’s Disease. Current Alzheimer Research, 20, 11-28. https://doi.org/10.2174/1567205020666230503094441 |
[10] | 周季冬. 基于便携式单导脑电采集系统的情绪识别研究[D]: [硕士学位论文]. 郑州: 河南工业大学, 2020. https://doi.org/10.27791/d.cnki.ghegy.2019.000194 |
[11] | Bigirimana, A.D., Siddique, N. and Coyle, D. (2016) A Hybrid ICA-Wavelet Transform for Automated Artefact Removal in EEG-Based Emotion Recognition. 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, 9-12 October 2016, 4429-4434. https://doi.org/10.1109/smc.2016.7844928 |
[12] | 高娟, 刘顺达, 马晓萍, 等. 事件相关电位P300对脑卒中后认知功能障碍的诊断价值研究[J]. 吉林医学, 2021, 42(10): 2348-2350. |
[13] | Dauwels, J., Vialatte, F. and Cichocki, A. (2010) Diagnosis of Alzheimers Disease from EEG Signals: Where Are We Standing? Current Alzheimer Research, 7, 487-505. https://doi.org/10.2174/156720510792231720 |
[14] | Wen, D., Zhou, Y. and Li, X. (2015) A Critical Review: Coupling and Synchronization Analysis Methods of EEG Signal with Mild Cognitive Impairment. Frontiers in Aging Neuroscience, 7, Article 54. https://doi.org/10.3389/fnagi.2015.00054 |
[15] | Babiloni, C., Barry, R.J., Ba?ar, E., Blinowska, K.J., Cichocki, A., Drinkenburg, W.H.I.M., et al. (2020) International Federation of Clinical Neurophysiology (IFCN)—EEG Research Workgroup: Recommendations on Frequency and Topographic Analysis of Resting State EEG Rhythms. Part 1: Applications in Clinical Research Studies. Clinical Neurophysiology, 131, 285-307. https://doi.org/10.1016/j.clinph.2019.06.234 |
[16] | Smailovic, U., Koenig, T., K?reholt, I., Andersson, T., Kramberger, M.G., Winblad, B., et al. (2020) Corrigendum to Quantitative EEG Power and Synchronization Correlate with Alzheimer’s Disease CSF Biomarkers Neurobiology of Aging 63 (2018) 88-95. Neurobiology of Aging, 91, 171. https://doi.org/10.1016/j.neurobiolaging.2020.03.005 |
[17] | Horvath, A. (2018) EEG and ERP Biomarkers of Alzheimer’s Disease: A Critical Review. Frontiers in Bioscience, 23, 183-220. https://doi.org/10.2741/4587 |
[18] | 高利, 马健, 马亚玲, 等. 脑电图预警指标α波、θ波对老年轻度认知障碍的预测价值[J]. 国际精神病学杂志, 2017, 44(5): 861-863. https://doi.org/10.13479/j.cnki.jip.2017.05.027 |
[19] | Neto, E., Allen, E.A., Aurlien, H., Nordby, H. and Eichele, T. (2015) EEG Spectral Features Discriminate between Alzheimer’s and Vascular Dementia. Frontiers in Neurology, 6, Article 25. https://doi.org/10.3389/fneur.2015.00025 |
[20] | Gianotti, L.R.R., Künig, G., Lehmann, D., Faber, P.L., Pascual-Marqui, R.D., Kochi, K., et al. (2007) Correlation between Disease Severity and Brain Electric LORETA Tomography in Alzheimer’s Disease. Clinical Neurophysiology, 118, 186-196. https://doi.org/10.1016/j.clinph.2006.09.007 |
[21] | Babiloni, C., Frisoni, G., Steriade, M., Bresciani, L., Binetti, G., Delpercio, C., et al. (2006) Frontal White Matter Volume and Delta EEG Sources Negatively Correlate in Awake Subjects with Mild Cognitive Impairment and Alzheimer’s Disease. Clinical Neurophysiology, 117, 1113-1129. https://doi.org/10.1016/j.clinph.2006.01.020 |
[22] | 龙霞. 定量脑电图在阿尔茨海默病临床诊断应用中的荟萃分析[D]: [硕士学位论文]. 重庆: 重庆医科大学, 2019. |
[23] | 吴钦娟, 郭宗君, 刘世恩, 等. 阿尔茨海默病、轻度认知障碍患者情景记忆与静息脑功能连接的关系[J]. 中华医学杂志, 2013, 93(23): 1795-1800. |
[24] | Koberda, J.L. (2020) QEEG as a Useful Tool for the Evaluation of Early Cognitive Changes in Dementia and Traumatic Brain Injury. Clinical EEG and Neuroscience, 52, 119-125. https://doi.org/10.1177/1550059420914816 |
[25] | 李俊, 宋春杰, 马芸, 等. 定量脑电图在急性脑梗死后认知障碍患者中的应用价值研究[J]. 实用心脑肺血管病杂志, 2021, 29(11): 106-110. |
[26] | 丁晶, 王继军, 邓钰蕾, 等. 事件相关电位的临床应用与操作规范上海专家共识[J]. 上海医学, 2023, 46(2): 65-73. https://doi.org/10.19842/j.cnki.issn.0253-9934.2023.02.001 |
[27] | Korzyukov, O., Pflieger, M.E., Wagner, M., Bowyer, S.M., Rosburg, T., Sundaresan, K., et al. (2007) Generators of the Intracranial P50 Response in Auditory Sensory Gating. NeuroImage, 35, 814-826. https://doi.org/10.1016/j.neuroimage.2006.12.011 |
[28] | Golob, E.J., Irimajiri, R. and Starr, A. (2007) Auditory Cortical Activity in Amnestic Mild Cognitive Impairment: Relationship to Subtype and Conversion to Dementia. Brain, 130, 740-752. https://doi.org/10.1093/brain/awl375 |
[29] | 李晓裔, 邵西仓, 陈戈雨, 等. 听觉事件相关电位对轻度认知功能障碍的诊断价值[J]. 临床神经病学杂志, 2013, 26(4): 244-247. |
[30] | 付雨桐, 姚黎清, 欧吉兵, 等. N170在阿尔兹海默病中的应用现状[J]. 中国医学物理学杂志, 2022, 39(1): 95-99. |
[31] | Feuerriegel, D., Churches, O., Hofmann, J. and Keage, H.A.D. (2015) The N170 and Face Perception in Psychiatric and Neurological Disorders: A Systematic Review. Clinical Neurophysiology, 126, 1141-1158. https://doi.org/10.1016/j.clinph.2014.09.015 |
[32] | Perez, V., Garrido‐Chaves, R., Zapater‐Fajarí, M., Pulopulos, M.M., Barbosa, F., Hidalgo, V., et al. (2021) Deficits in Facial Emotional Valence Processing in Older People with Subjective Memory Complaints: Behavioral and Electrophysiological Evidence. Psychophysiology, 59, e13989. https://doi.org/10.1111/psyp.13989 |
[33] | 靳康佳, 王旭. 视觉事件相关电位在颅脑损伤和视功能评估中的研究与展望[J]. 法医学杂志, 2022, 38(4): 520-525. |
[34] | 杨道良, 李霞, 李婷, 等. 老年抑郁症和阿尔茨海默病的事件相关电位失匹配负波(MMN)的对照研究[J]. 中国健康心理学杂志, 2017, 25(12): 1774-1776. https://doi.org/10.13342/j.cnki.cjhp.2017.12.005 |
[35] | Mowszowski, L., Hermens, D.F., Diamond, K., Norrie, L., Hickie, I.B., Lewis, S.J.G., et al. (2012) Reduced Mismatch Negativity in Mild Cognitive Impairment: Associations with Neuropsychological Performance. Journal of Alzheimer’s Disease, 30, 209-219. https://doi.org/10.3233/jad-2012-111868 |
[36] | 李春芳, 徐苏林, 苗青, 等. 急性丘脑梗死后认知功能及抑郁状态与事件相关电位P300的相关性分析[J]. 安徽医学, 2022, 43(10): 1166-1170. |
[37] | Lee, M., Lee, S., Moon, E., Moon, Y., Kim, S., Kim, S., et al. (2013) Neuropsychological Correlates of the P300 in Patients with Alzheimer’s Disease. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 40, 62-69. https://doi.org/10.1016/j.pnpbp.2012.08.009 |
[38] | Olichney, J., Xia, J., Church, K.J. and Moebius, H.J. (2022) Predictive Power of Cognitive Biomarkers in Neurodegenerative Disease Drug Development: Utility of the P300 Event-Related Potential. Neural Plasticity, 2022, Article ID: 2104880. https://doi.org/10.1155/2022/2104880 |
[39] | Paitel, E.R., Samii, M.R. and Nielson, K.A. (2021) A Systematic Review of Cognitive Event-Related Potentials in Mild Cognitive Impairment and Alzheimer’s Disease. Behavioural Brain Research, 396, Article ID: 112904. https://doi.org/10.1016/j.bbr.2020.112904 |
[40] | Khanna, A., Pascual-Leone, A., Michel, C.M. and Farzan, F. (2015) Microstates in Resting-State EEG: Current Status and Future Directions. Neuroscience & Biobehavioral Reviews, 49, 105-113. https://doi.org/10.1016/j.neubiorev.2014.12.010 |
[41] | 杨长杰. 基于脑电特征分析的轻度认知障碍诊断方法研究[D]: [硕士学位论文]. 秦皇岛: 燕山大学, 2023. https://doi.org/10.27440/d.cnki.gysdu.2022.002144 |
[42] | Su, R., Li, X., Liu, Y., Cui, W., Xie, P. and Han, Y. (2021) Evaluation of the Brain Function State during Mild Cognitive Impairment Based on Weighted Multiple Multiscale Entropy. Frontiers in Aging Neuroscience, 13, Article 625081. https://doi.org/10.3389/fnagi.2021.625081 |
[43] | Kim, D., Heo, J., Kim, Y., Kim, J.B. and Kim, D. (2022). Cognitive Modeling Using Multivariate Multiscale Entropy Analysis of EEG: Entropy Changes According to Auditory Inputs and the Level of Attention. 2022 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia), Yeosu, 26-28 October 2022, 1-4. https://doi.org/10.1109/icce-asia57006.2022.9954710 |
[44] | Ding, Y., Chu, Y., Liu, M., Ling, Z., Wang, S., Li, X., et al. (2022) Fully Automated Discrimination of Alzheimer’s Disease Using Resting-State Electroencephalography Signals. Quantitative Imaging in Medicine and Surgery, 12, 1063-1078. https://doi.org/10.21037/qims-21-430 |