|
E-Commerce Letters 2024
中美银行市场之间风险溢出效应分析——基于GARCH-Copula-CoVaR模型
|
Abstract:
十八大以来,随着我国金融服务业的全面开放,中国银行市场与国际金融市场的联系日益紧密,对国际间银行市场风险溢出效应的定量分析,将有助于我国银行业应对国际金融风险的冲击。文章基于2018~2022年间中美银行指数日收益数据,采用GARCH-Copula-CoVaR模型,对美国与中国银行市场之间的风险溢出效应进行了实证分析。结果显示:1) 美国银行市场对我国银行市场存在较强的正向风险溢出效应,2) 大型银行的风险外溢强于中小型银行,3) 传统商业银行的风险溢出效应强于非传统商业银行。这些结论为管理当局进行宏观审慎监管、为中国银行业应对国际金融风险冲击提供了启示。
Since the 18th National Congress, with the full opening up of China’s financial service industry, China’s banking market has become more and more closely connected with the international financial market, and the quantitative analysis of the risk spillover effect of the international banking market will help China’s banking industry to cope with the impact of international financial risks. The article empirically analyzes the risk spillover effect between the U.S. and Chinese banking markets based on the daily return data of the U.S.-China banking index for the period 2018~2022, using the GARCH-Copula-CoVaR model. The results show that 1) the U.S. banking market has a strong positive risk spillover effect on China’s banking market, 2) the risk spillover of large banks is stronger than that of small and medium-sized banks, and 3) the risk spillover effect of traditional commercial banks is stronger than that of non-traditional commercial banks. These findings provide insights for management authorities to conduct macroprudential supervision and for China’s banking sector to cope with international financial risk shocks.
[1] | Adrian, T. and Brunnermeir, M.K. (20019) CoVaR. Fed Reserve Bank of New York Staff Report. |
[2] | Reboredo, J.C. and Ugolini, A. (2015) Systemic Risk in European Sovereign Debt Markets: A Covar-Copula Approach. Journal of International Money and Finance, 51, 214-244. https://doi.org/10.1016/j.jimonfin.2014.12.002 |
[3] | Drakos, A.A. and Kouretas, G.P. (2015) Bank Ownership, Financial Segments and the Measurement of Systemic Risk: An Application of CoVaR. International Review of Economics & Finance, 40, 127-140. https://doi.org/10.1016/j.iref.2015.02.010 |
[4] | 沈虹, 邢荧. 基于CoVaR方法的中美股市风险溢出效应研究[J]. 会计之友, 2017(16): 14-16. |
[5] | 李强, 何妃婷, 董耀武. 国际原油期货极端风险溢出及其防范研究——基于DCC-TGARCH-CoVaR模型的分析[J]. 价格理论与实践, 2020(12): 79-82, 162. |
[6] | 史嘉俊, 叶李伟. 国际股市极端风险溢出效应研究——基于上行CoVaR和下行CoVaR的分析[J]. 金融与经济, 2021(12): 4-14. |
[7] | 江一帆. 基于Copula函数的“一带一路”沿线地区金融风险相依性研究[J]. 金融经济, 2021(11): 33-41. |
[8] | 罗长青, 刘澜, 傅欣欣. 金融市场风险的溢出效应与溢回效应——基于中国与“一带一路”沿线国家的研究[J]. 西安财经大学学报, 2021, 34(5): 17-28. |
[9] | 钟雯, 李保民. “一带一路”倡议下中国与东盟金融市场风险溢出效应研究[J]. 高师理科学刊, 2021, 41(6): 16-21. |
[10] | 荆中博, 李雪萌, 方意. 跨境资本周期性波动对中国银行部门的风险溢出机制分析[J]. 世界经济, 2022, 45(1): 182-205. |
[11] | Li, Z., Hou, J. and Zhang, J. (2022) Spillover Effect of Crude Oil Futures Market: An Empirical Research from Emerging Market. Sustainable Energy Technologies and Assessments, 53, Article ID: 102695. https://doi.org/10.1016/j.seta.2022.102695 |
[12] | 王倩, 郭志钢, 车莹莹, 等. 中外原油期货市场价格、风险联动关系研究[J]. 投资与合作, 2022(1): 33-35. |
[13] | 王喜平, 王雪萍. 基于时变Copula-CoVaR的欧盟与国内碳市场风险溢出效应研究[J]. 分布式能源, 2022, 7(2): 8-17. |
[14] | 张松艳, 杜明娅. 国际原油期货对中国农产品期货市场的风险溢出效应研究——基于DCC-GARCH-CoVaR模型[J]. 统计与管理, 2022, 37(10): 80-86. |
[15] | Zhao, J., Cui, L., Liu, W. and Zhang, Q. (2023) Extreme Risk Spillover Effects of International Oil Prices on the Chinese Stock Market: A GARCH-EVT-Copula-CoVaR Approach. Resources Policy, 86, Article ID: 104142. https://doi.org/10.1016/j.resourpol.2023.104142 |
[16] | Engle, R.F. (1982) Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica, 50, 987-1007. https://doi.org/10.2307/1912773 |
[17] | Bollerslev, T. (1986) Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, 31, 307-327. https://doi.org/10.1016/0304-4076(86)90063-1 |
[18] | Sklar, M. (1959) Fonctions de répartition à n dimensions et leurs marges. Annales de l’ISUP, 8, 229-231. |