全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

ACSL4在肿瘤中的研究进展
Research Progress of ACSL4 in Cancer

DOI: 10.12677/hjmce.2024.123022, PP. 196-203

Keywords: ACSL4,肿瘤,进展
ACSL4
, Tumor, Progress

Full-Text   Cite this paper   Add to My Lib

Abstract:

ACSL4是长链酰基辅酶A合成酶家族的一员,参与机体脂肪代谢,主要催化花生四烯酸和二十碳五烯酸。其在许多肿瘤中都有不同程度的表达,且通过不同途径调控着肿瘤的发生发展,生长增殖以及侵袭迁移。本文就近年来ACSL4在肿瘤中的相关研究,包括肝癌、胃癌、前列腺癌、乳腺癌、结直肠癌、卵巢癌等方面进行阐述,为临床治疗肿瘤提供新的理论依据和指导思路。
ACSL4 is a member of the long chain acyl-CoA synthetase family, which is involved in body fat metabolism and mainly catalyzes arachidonic acid and eicosapentaenoic acid. It is expressed in many tumors to varying degrees, and regulates the occurrence, development, growth, proliferation, invasion and migration of tumors through different ways. In this paper, the relevant studies of ACSL4 in cancer in recent years are described in liver cancer, gastric cancer, prostate cancer, breast cancer, colorectal cancer and ovarian cancer, providing new theoretical basis and guidance for clinical treatment of tumor.

References

[1]  Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263.
https://doi.org/10.3322/caac.21834
[2]  R?hrig, F. and Schulze, A. (2016) The Multifaceted Roles of Fatty Acid Synthesis in Cancer. Nature Reviews Cancer, 16, 732-749.
https://doi.org/10.1038/nrc.2016.89
[3]  Soupene, E. and Kuypers, F.A. (2008) Mammalian Long-Chain Acyl-CoA Synthetases. Experimental Biology and Medicine, 233, 507-521.
https://doi.org/10.3181/0710-mr-287
[4]  Kang, M., Fujino, T., Sasano, H., Minekura, H., Yabuki, N., Nagura, H., et al. (1997) A Novel Arachidonate-Preferring Acyl-CoA Synthetase Is Present in Steroidogenic Cells of the Rat Adrenal, Ovary, and Testis. Proceedings of the National Academy of Sciences, 94, 2880-2884.
https://doi.org/10.1073/pnas.94.7.2880
[5]  Cao, Y., Traer, E., Zimmerman, G.A., McIntyre, T.M. and Prescott, S.M. (1998) Cloning, Expression, and Chromosomal Localization of Human Long-Chain Fatty Acid-CoA Ligase 4 (FACL4). Genomics, 49, 327-330.
https://doi.org/10.1006/geno.1998.5268
[6]  Minekura, H., Kang, M., Inagaki, Y., Cho, Y., Suzuki, H., Fujino, T., et al. (2001) Exon/Intron Organization and Transcription Units of the Human Acyl-CoA Synthetase 4 Gene. Biochemical and Biophysical Research Communications, 286, 80-86.
https://doi.org/10.1006/bbrc.2001.5357
[7]  Ma, L., Liang, L., Zhou, D. and Wang, S. (2021) Tumor Suppressor MiR-424-5p Abrogates Ferroptosis in Ovarian Cancer through Targeting ACSL4. Neoplasma, 68, 165-173.
https://doi.org/10.4149/neo_2020_200707n705
[8]  Xiao, F., Zhang, D., Wu, Y., Jia, Q., Zhang, L., Li, Y., et al. (2019) MiRNA-17-92 Protects Endothelial Cells from Erastin-Induced Ferroptosis through Targeting the A20-ACSL4 Axis. Biochemical and Biophysical Research Communications, 515, 448-454.
https://doi.org/10.1016/j.bbrc.2019.05.147
[9]  Cao, Y., Pearman, A.T., Zimmerman, G.A., McIntyre, T.M. and Prescott, S.M. (2000) Intracellular Unesterified Arachidonic Acid Signals Apoptosis. Proceedings of the National Academy of Sciences, 97, 11280-11285.
https://doi.org/10.1073/pnas.200367597
[10]  Abe, T., Fujino, T., Fukuyama, R., Minoshima, S., Shimizu, N., Toh, H., et al. (1992) Human Long-Chain Acyl-CoA Synthetase: Structure and Chromosomal Location1. The Journal of Biochemistry, 111, 123-128.
https://doi.org/10.1093/oxfordjournals.jbchem.a123707
[11]  Küch, E., Vellaramkalayil, R., Zhang, I., Lehnen, D., Brügger, B., Stremmel, W., et al. (2014) Differentially Localized Acyl-CoA Synthetase 4 Isoenzymes Mediate the Metabolic Channeling of Fatty Acids towards Phosphatidylinositol. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1841, 227-239.
https://doi.org/10.1016/j.bbalip.2013.10.018
[12]  Meloni, I., Parri, V., De Filippis, R., Ariani, F., Artuso, R., Bruttini, M., et al. (2009) The XLMR Gene ACSL4 Plays a Role in Dendritic Spine Architecture. Neuroscience, 159, 657-669.
https://doi.org/10.1016/j.neuroscience.2008.11.056
[13]  Obermeyer, T., Fraisl, P., DiRusso, C.C. and Black, P.N. (2007) Topology of the Yeast Fatty Acid Transport Protein Fat1p: Mechanistic Implications for Functional Domains on the Cytosolic Surface of the Plasma Membrane. Journal of Lipid Research, 48, 2354-2364.
https://doi.org/10.1194/jlr.m700300-jlr200
[14]  Shimbara-Matsubayashi, S., Kuwata, H., Tanaka, N., Kato, M. and Hara, S. (2019) Analysis on the Substrate Specificity of Recombinant Human Acyl-CoA Synthetase ACSL4 Variants. Biological and Pharmaceutical Bulletin, 42, 850-855.
https://doi.org/10.1248/bpb.b19-00085
[15]  Ohkuni, A., Ohno, Y. and Kihara, A. (2013) Identification of Acyl-CoA Synthetases Involved in the Mammalian Sphingosine 1-Phosphate Metabolic Pathway. Biochemical and Biophysical Research Communications, 442, 195-201.
https://doi.org/10.1016/j.bbrc.2013.11.036
[16]  Chen, W., Wang, C., Hung, Y., Weng, T., Yen, M. and Lai, M. (2016) Systematic Analysis of Gene Expression Alterations and Clinical Outcomes for Long-Chain Acyl-Coenzyme a Synthetase Family in Cancer. PLOS ONE, 11, e0155660.
https://doi.org/10.1371/journal.pone.0155660
[17]  Chen, X., Kang, R., Kroemer, G. and Tang, D. (2021) Broadening Horizons: The Role of Ferroptosis in Cancer. Nature Reviews Clinical Oncology, 18, 280-296.
https://doi.org/10.1038/s41571-020-00462-0
[18]  Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., Skouta, R., Zaitsev, E.M., Gleason, C.E., et al. (2012) Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell, 149, 1060-1072.
https://doi.org/10.1016/j.cell.2012.03.042
[19]  Xie, B., Wang, Y., Lin, Y., Mao, Q., Feng, J., Gao, G., et al. (2018) Inhibition of Ferroptosis Attenuates Tissue Damage and Improves Long‐Term Outcomes after Traumatic Brain Injury in Mice. CNS Neuroscience & Therapeutics, 25, 465-475.
https://doi.org/10.1111/cns.13069
[20]  Liao, P., Wang, W., Wang, W., Kryczek, I., Li, X., Bian, Y., et al. (2022) CD8+ T Cells and Fatty Acids Orchestrate Tumor Ferroptosis and Immunity via ACSL4. Cancer Cell, 40, 365-378.E6.
https://doi.org/10.1016/j.ccell.2022.02.003
[21]  Wu, X., Zhi, F., Lun, W., Deng, Q. and Zhang, W. (2018) Baicalin Inhibits PDGF-BB-Induced Hepatic Stellate Cell Proliferation, Apoptosis, Invasion, Migration and Activation via the MiR-3595/ACSL4 Axis. International Journal of Molecular Medicine, 41, 1992-2002.
https://doi.org/10.3892/ijmm.2018.3427
[22]  Liu, X., Hai, Y., Dong, J., Xu, L., Hou, W., Su, J., et al. (2022) Realgar-Induced KRAS Mutation Lung Cancer Cell Death via KRAS/Raf/MAPK Mediates Ferroptosis. International Journal of Oncology, 61, Article No. 157.
https://doi.org/10.3892/ijo.2022.5447
[23]  Lu, Y., Chan, Y., Tan, H., Zhang, C., Guo, W., Xu, Y., et al. (2022) Epigenetic Regulation of Ferroptosis via ETS1/MiR-23a-3p/ACSL4 Axis Mediates Sorafenib Resistance in Human Hepatocellular Carcinoma. Journal of Experimental & Clinical Cancer Research, 41, Article No. 3.
https://doi.org/10.1186/s13046-021-02208-x
[24]  Li, H., Song, J., He, Y., Liu, Y., Liu, Z., Sun, W., et al. (2022) CRISPR/CAS9 Screens Reveal That Hexokinase 2 Enhances Cancer Stemness and Tumorigenicity by Activating the ACSL4‐Fatty Acid β‐Oxidation Pathway. Advanced Science, 9, Article 2105126.
https://doi.org/10.1002/advs.202105126
[25]  Qin, X., Zhang, J., Lin, Y., Sun, X., Zhang, J. and Cheng, Z. (2020) Identification of MiR-211-5p as a Tumor Suppressor by Targeting ACSL4 in Hepatocellular Carcinoma. Journal of Translational Medicine, 18, Article No. 326.
https://doi.org/10.1186/s12967-020-02494-7
[26]  Ye, X., Zhang, Y., Wang, X., Li, Y. and Gao, Y. (2016) Tumor-Suppressive Functions of Long-Chain Acyl-CoA Synthetase 4 in Gastric Cancer. IUBMB Life, 68, 320-327.
https://doi.org/10.1002/iub.1486
[27]  Khaidakov, M., Mitra, S., Kang, B., Wang, X., Kadlubar, S., Novelli, G., et al. (2011) Oxidized LDL Receptor 1 (OLR1) as a Possible Link between Obesity, Dyslipidemia and Cancer. PLOS ONE, 6, e20277.
https://doi.org/10.1371/journal.pone.0020277
[28]  Jiang, X., Stockwell, B.R. and Conrad, M. (2021) Ferroptosis: Mechanisms, Biology and Role in Disease. Nature Reviews Molecular Cell Biology, 22, 266-282.
https://doi.org/10.1038/s41580-020-00324-8
[29]  Yang, H., Hu, Y., Weng, M., Liu, X., Wan, P., Hu, Y., et al. (2022) Hypoxia Inducible LncRNA-CBSLR Modulates Ferroptosis through m6A-YTHDF2-Dependent Modulation of CBS in Gastric Cancer. Journal of Advanced Research, 37, 91-106.
https://doi.org/10.1016/j.jare.2021.10.001
[30]  Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[31]  Gu, Y., Wu, S., Fan, J., Meng, Z., Gao, G., Liu, T., et al. (2024) CYLD Regulates Cell Ferroptosis through Hippo/Yap Signaling in Prostate Cancer Progression. Cell Death & Disease, 15, Article No. 79.
https://doi.org/10.1038/s41419-024-06464-5
[32]  Wu, X., Deng, F., Li, Y., Daniels, G., Du, X., Ren, Q., et al. (2015) ACSL4 Promotes Prostate Cancer Growth, Invasion and Hormonal Resistance. Oncotarget, 6, 44849-44863.
https://doi.org/10.18632/oncotarget.6438
[33]  Karantanos, T., Corn, P.G. and Thompson, T.C. (2013) Prostate Cancer Progression after Androgen Deprivation Therapy: Mechanisms of Castrate Resistance and Novel Therapeutic Approaches. Oncogene, 32, 5501-5511.
https://doi.org/10.1038/onc.2013.206
[34]  Luo, J., Li, Y., Li, Y., Chen, X., Du, P., Wang, Z., et al. (2023) Reversing Ferroptosis Resistance in Breast Cancer via Tailored Lipid and Iron Presentation. ACS Nano, 17, 25257-25268.
https://doi.org/10.1021/acsnano.3c08485
[35]  Park, M., Kim, D., Ko, S., Kim, A., Mo, K. and Yoon, H. (2022) Breast Cancer Metastasis: Mechanisms and Therapeutic Implications. International Journal of Molecular Sciences, 23, Article 6806.
https://doi.org/10.3390/ijms23126806
[36]  Lü?nd, F., Sugiyama, N., Bill, R., Bornes, L., Hager, C., Tang, F., et al. (2021) Distinct Contributions of Partial and Full EMT to Breast Cancer Malignancy. Developmental Cell, 56, 3203-3221.E11.
https://doi.org/10.1016/j.devcel.2021.11.006
[37]  Lin, J., Zhang, P., Liu, W., Liu, G., Zhang, J., Yan, M., et al. (2023) A Positive Feedback Loop between ZEB2 and ACSL4 Regulates Lipid Metabolism to Promote Breast Cancer Metastasis. eLife, 12, RP87510.
https://doi.org/10.7554/elife.87510.4
[38]  Zeng, K., Li, W., Wang, Y., Zhang, Z., Zhang, L., Zhang, W., et al. (2023) Inhibition of CDK1 Overcomes Oxaliplatin Resistance by Regulating ACSL4‐mediated Ferroptosis in Colorectal Cancer. Advanced Science, 10, Article 2301088.
https://doi.org/10.1002/advs.202301088
[39]  Chen, C., Yang, Y., Guo, Y., He, J., Chen, Z., Qiu, S., et al. (2023) CYP1B1 Inhibits Ferroptosis and Induces Anti-PD-1 Resistance by Degrading ACSL4 in Colorectal Cancer. Cell Death & Disease, 14, Article No. 271.
https://doi.org/10.1038/s41419-023-05803-2
[40]  Xia, L., Yang, M. and Liu, Y. (2024) Portulaca oleracea L. Polysaccharide Inhibits Ovarian Cancer via Inducing ACSL4-Dependent Ferroptosis. Aging, 16, 5108-5122.
https://doi.org/10.18632/aging.205608

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133