|
E-Commerce Letters 2024
金融行业与实体行业间的动态相关性研究
|
Abstract:
本文依据2013~2023年中证行业指数日收益率数据,通过构建单变量时间序列的GARCH模型生成标准差,进一步建立DCC-GARCH模型来分析我国金融行业与实体行业股票市场收益率波动的动态相关关系。实证结果表明,我国金融行业与各实体行业间收益率波动存在动态关联性。金融行业与医药卫生行业、金融行业与公用事业行业、金融行业与工业行业收益率波动的动态相关性从高到低排在前三位,金融行业与主要消费行业的动态相关性最弱。随着我国经济的发展,实体行业与金融体系间的联系日益紧密,研究其风险波动溢出具有重要意义,需从金融体系、实体行业、金融监管三个方面协同构建监管框架,预防金融实体行业间的极端风险。
Based on the daily return data of China Securities industry index from 2013 to 2023, this paper constructs a univariate time series GARCH model to generate standard deviation, and further establishes a DCC-GARCH model to analyze the dynamic correlation between the stock market return fluctuation of China’s financial industry and the real industry. The empirical results show that there is a dynamic correlation between the rate of return fluctuation of China’s financial industry and other real industries. The dynamic correlation between the financial industry and the medical and health industry, the financial industry and the public utility industry, the financial industry and the industrial industry is ranked in the top three from the highest to the bottom, and the dynamic correlation between the financial industry and the main consumer industry is the weakest. With the development of China’s economy, the link between the real industry and the financial system is increasingly close, so it is of great significance to study the spillover of risk volatility. It is necessary to build a regulatory framework from the three aspects of the financial system, the real industry and financial supervision to prevent extreme risks among the financial entity industries.
[1] | 坚持把服务实体经济作为根本宗旨[N]. 人民日报, 2024-04-18(010). |
[2] | Kiyotaki, N. and Moore, J. (1997) Credit Cycles. Journal of Political Economy, 105, 211-248. https://doi.org/10.1086/262072 |
[3] | Chiu, W.C., Pena, J.I. and Wang, C.W. (2015) Industry Characteristics and Financial Risk Contagion. Journal of Banking & Finance, 50, 411-427. https://doi.org/10.1016/j.jbankfin.2014.04.003 |
[4] | Brownlees, C. and Engle, R.F. (2017) SRISK: A Conditional Capital Shortfall Measure of Systemic Risk. Review of Financial Studies, 30, 48-79. https://doi.org/10.1093/rfs/hhw060 |
[5] | 何红霞, 武志胜. 金融行业对实体经济行业的风险传导研究——基于行业特征数据的实证分析[J]. 金融与经济, 2018(6): 40-46. |
[6] | 李政, 刘淇, 梁琪. 基于经济金融关联网络的中国系统性风险防范研究[J]. 统计研究, 2019, 36(2): 23-37. |
[7] | 陈暮紫, 魏纯, 谢豪, 李楠. 基于GARCH-CoVaR方法的中国A股行业关联网络风险溢出动态研究[J]. 金融经济学研究, 2019, 34(4): 134-146. |
[8] | 方意, 和文佳, 荆中博. 中国实体经济与金融市场的风险溢出研究[J]. 世界经济, 2021, 44(8): 3-27. |
[9] | Engle, R.F. (1982) Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of U.K. Inflation. Econometrica, 45, 987-1007. https://doi.org/10.2307/1912773 |
[10] | Bollerslev, T. (1986) Generalized Autoregressive Conditional Heteroscedasticity. Journal of Econometrics, 31, 307-327. https://doi.org/10.1016/0304-4076(86)90063-1 |
[11] | Bollerslev, T. (1990) Modeling the Coherence in Short-Run Nominal Exchange Rates: A Multivariate Generalized ARCH Model. Reviews of Economics and Statistics, 72, 498-505. https://doi.org/10.2307/2109358 |
[12] | Engle, R.F. (2002) Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models. Journal of Business and Economic Statistics, 20, 339-350. https://doi.org/10.1198/073500102288618487 |
[13] | 郑振龙, 杨伟. 金融资产收益动态相关性: 基于DCC多元变量GARCH模型的实证研究[J]. 当代财经, 2012(7): 41-49. |
[14] | 蔡庆丰, 郭俊峰, 陈耀辉. 沪深300期现货市场动态波动关系研究: 基于VECM-GJR-DCC-MGARCH-t模型的视角[J]. 系统管理学报, 2015, 24(2): 209-214. |
[15] | 蒋彧. 中国股市的国际影响力提高了吗?——基于中国与世界主要股市的实证检验[J]. 东南大学学报(哲学社会科学版), 2019, 21(3): 53-63+147. |
[16] | 钟林洲, 谭美, 赵江琪, 申敏. 基于DCC-GARCH模型对服务业板块的多元分析[J]. 中阿科技论坛(中英文), 2022(9): 65-70. |