|
关于求解矩阵方程AXB = C的预处理Richardson迭代
|
Abstract:
本文类比于求解线性方程Ax = b的Richardson迭代,通过引入可调参数ω,提出了求解矩阵方程AXB = C的Richardson迭代及其Jacobi和Gauss-Seidel预处理迭代,并详细分析了它们的收敛性。此外,对于一些特殊情况,可以得到参数ω的最优选择,使得迭代矩阵的谱半径达到最小。最后,通过数值实验,我们验证了所提算法的有效性。
In this paper, analogous to Richardson iteration for solving linear equation Ax = b, Richardson iteration and preprocessed Jacobi and Gauss-Seidel iteration are proposed for solving the matrix equation AXB = C by introducing a tunable parameter ω, and their convergence properties are analyzed in detail. Moreover, the optimal choices of the parameter ω to minimize the spectral radius of the iteration matrix are also obtained for some special cases. Finally, numerical experiments are carried out to illustrate the effectiveness of the proposed algorithms.
[1] | Fausett, D.W. and Fulton, C.T. (1994) Large Least Squares Problems Involving Kronecker Products. SIAM Journal on Matrix Analysis and Applications, 15, 219-227. https://doi.org/10.1137/s0895479891222106 |
[2] | Peng, Z. (2005) An Iterative Method for the Least Squares Symmetric Solution of the Linear Matrix Equation A×B=C. Applied Mathematics and Computation, 170, 711-723. https://doi.org/10.1016/j.amc.2004.12.032 |
[3] | Cvetkovi?-Iliíc, D.S. (2006) The Reflexive Solutions of the Matrix Equation A×B=C. Computers & Mathematics with Applications, 51, 897-902. https://doi.org/10.1016/j.camwa.2005.11.032 |
[4] | Liang, M., You, C. and Dai, L. (2007) An Efficient Algorithm for the Generalized Centro-Symmetric Solution of Matrix Equation A×B=C. Numerical Algorithms, 44, 173-184. https://doi.org/10.1007/s11075-007-9097-z |
[5] | Wang, X., Li, Y. and Dai, L. (2013) On Hermitian and Skew-Hermitian Splitting Iteration Methods for the Linear Matrix Equation A×B=C. Computers & Mathematics with Applications, 65, 657-664. https://doi.org/10.1016/j.camwa.2012.11.010 |
[6] | Tian, Z., Tian, M., Liu, Z. and Xu, T. (2017) The Jacobi and Gauss-Seidel-Type Iteration Methods for the Matrix Equation A×B=C. Applied Mathematics and Computation, 292, 63-75. https://doi.org/10.1016/j.amc.2016.07.026 |
[7] | Demmel, J.W. (1997) Applied Numerical Linear Algebra. Society for Industrial and Applied Mathematics, Philadelphia. https://doi.org/10.1137/1.9781611971446 |
[8] | Horn, R. and Johnson, C.R. (1986) Matrix Analysis. Cambridge University Press, Cambridge. |
[9] | Frommer, A. and Szyld, D.B. (1992) H-Splittings and Two-Stage Iterative Methods. Numerische Mathematik, 63, 345-356. https://doi.org/10.1007/bf01385865 |
[10] | Yousef, S. (2003) Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied Mathematics, Philadelphia, 116-118. |
[11] | Yeyios, A. (1984) On the Optimization of an Extrapolation Method. Linear Algebra and its Applications, 57, 191-203. https://doi.org/10.1016/0024-3795(84)90187-3 |