全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

关于求解矩阵方程AXB = C的预处理Richardson迭代
On the Preprocessed Richardson Iteration for Solving Matrix Equation AXB = C

DOI: 10.12677/aam.2024.137298, PP. 3130-3139

Keywords: Richardson迭代,Jacobi预处理子,Gauss-Seidel预处理子,收敛性,最优参数
Richardson Iteration
, Jacobi Preprocessor, Gauss-Seidel Preprocessor, Convergence, Optimal Parameter

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文类比于求解线性方程Ax = b的Richardson迭代,通过引入可调参数ω,提出了求解矩阵方程AXB = C的Richardson迭代及其Jacobi和Gauss-Seidel预处理迭代,并详细分析了它们的收敛性。此外,对于一些特殊情况,可以得到参数ω的最优选择,使得迭代矩阵的谱半径达到最小。最后,通过数值实验,我们验证了所提算法的有效性。
In this paper, analogous to Richardson iteration for solving linear equation Ax = b, Richardson iteration and preprocessed Jacobi and Gauss-Seidel iteration are proposed for solving the matrix equation AXB = C by introducing a tunable parameter ω, and their convergence properties are analyzed in detail. Moreover, the optimal choices of the parameter ω to minimize the spectral radius of the iteration matrix are also obtained for some special cases. Finally, numerical experiments are carried out to illustrate the effectiveness of the proposed algorithms.

References

[1]  Fausett, D.W. and Fulton, C.T. (1994) Large Least Squares Problems Involving Kronecker Products. SIAM Journal on Matrix Analysis and Applications, 15, 219-227.
https://doi.org/10.1137/s0895479891222106
[2]  Peng, Z. (2005) An Iterative Method for the Least Squares Symmetric Solution of the Linear Matrix Equation A×B=C. Applied Mathematics and Computation, 170, 711-723.
https://doi.org/10.1016/j.amc.2004.12.032
[3]  Cvetkovi?-Iliíc, D.S. (2006) The Reflexive Solutions of the Matrix Equation A×B=C. Computers & Mathematics with Applications, 51, 897-902.
https://doi.org/10.1016/j.camwa.2005.11.032
[4]  Liang, M., You, C. and Dai, L. (2007) An Efficient Algorithm for the Generalized Centro-Symmetric Solution of Matrix Equation A×B=C. Numerical Algorithms, 44, 173-184.
https://doi.org/10.1007/s11075-007-9097-z
[5]  Wang, X., Li, Y. and Dai, L. (2013) On Hermitian and Skew-Hermitian Splitting Iteration Methods for the Linear Matrix Equation A×B=C. Computers & Mathematics with Applications, 65, 657-664.
https://doi.org/10.1016/j.camwa.2012.11.010
[6]  Tian, Z., Tian, M., Liu, Z. and Xu, T. (2017) The Jacobi and Gauss-Seidel-Type Iteration Methods for the Matrix Equation A×B=C. Applied Mathematics and Computation, 292, 63-75.
https://doi.org/10.1016/j.amc.2016.07.026
[7]  Demmel, J.W. (1997) Applied Numerical Linear Algebra. Society for Industrial and Applied Mathematics, Philadelphia.
https://doi.org/10.1137/1.9781611971446
[8]  Horn, R. and Johnson, C.R. (1986) Matrix Analysis. Cambridge University Press, Cambridge.
[9]  Frommer, A. and Szyld, D.B. (1992) H-Splittings and Two-Stage Iterative Methods. Numerische Mathematik, 63, 345-356.
https://doi.org/10.1007/bf01385865
[10]  Yousef, S. (2003) Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied Mathematics, Philadelphia, 116-118.
[11]  Yeyios, A. (1984) On the Optimization of an Extrapolation Method. Linear Algebra and its Applications, 57, 191-203.
https://doi.org/10.1016/0024-3795(84)90187-3

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133