%0 Journal Article
%T 关于求解矩阵方程AXB = C的预处理Richardson迭代
On the Preprocessed Richardson Iteration for Solving Matrix Equation AXB = C
%A 李嘉慧
%J Advances in Applied Mathematics
%P 3130-3139
%@ 2324-8009
%D 2024
%I Hans Publishing
%R 10.12677/aam.2024.137298
%X 本文类比于求解线性方程Ax = b的Richardson迭代,通过引入可调参数ω,提出了求解矩阵方程AXB = C的Richardson迭代及其Jacobi和Gauss-Seidel预处理迭代,并详细分析了它们的收敛性。此外,对于一些特殊情况,可以得到参数ω的最优选择,使得迭代矩阵的谱半径达到最小。最后,通过数值实验,我们验证了所提算法的有效性。
In this paper, analogous to Richardson iteration for solving linear equation Ax = b, Richardson iteration and preprocessed Jacobi and Gauss-Seidel iteration are proposed for solving the matrix equation AXB = C by introducing a tunable parameter ω, and their convergence properties are analyzed in detail. Moreover, the optimal choices of the parameter ω to minimize the spectral radius of the iteration matrix are also obtained for some special cases. Finally, numerical experiments are carried out to illustrate the effectiveness of the proposed algorithms.
%K Richardson迭代,Jacobi预处理子,Gauss-Seidel预处理子,收敛性,最优参数
Richardson Iteration
%K Jacobi Preprocessor
%K Gauss-Seidel Preprocessor
%K Convergence
%K Optimal Parameter
%U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=91176