全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

不定方程 x 2 kxy+k y 2 +dy=0的正整数解
The Positive Integer Solutions of the Diophantine Equation x 2 kxy+k y 2 +dy=0

DOI: 10.12677/aam.2024.136266, PP. 2771-2779

Keywords: 不定方程,Pell方程,正整数解,二次剩余,同余
Diophantine Equation
, Pell Equation, Positive Integer Solution, Quadratic Residues, Congruence

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究了在d∈{3,5,7,11,13,17,19},k∈N?时,不定方程x2?kxy+ky2+dy=0有无穷多个正整数解(x, y)当且仅当d = 3,k = 5, 6, 7;d = 5,k = 5, 7, 9;d = 7,k = 5, 8, 11;d = 11,k = 5, 6, 9, 10, 15;d = 13,k = 5, 11, 17;d = 17,k = 5, 7, 11, 13, 21;d = 19,k = 5, 11, 14, 23。在d为奇素数时,给出了不定方程x2?kxy+ky2+dy=0正整数解的一些必要条件。
In this paper, we study that atd∈{3,5,7,11,13,17,19},k∈N?, the indefinite equationx2?kxy+ky2+dy=0has infinitely many positive integer solutions (x, y) when and only when d = 3, k = 5, 6, 7; d = 5, k = 5, 7, 9; d = 7, k = 5, 8, 11; d = 11, k = 5, 6, 9, 10, 15; d = 13, k = 5, 11, 17; d = 17, k = 5, 7, 11, 13, 21; d = 19, k = 5, 11, 14, 23. Some necessary conditions for positive integer solutions of the indefinite equationx2?kxy+ky2+dy=0are given when d is an odd prime.

References

[1]  Marlewsk, A. and Zarzycki, P. (2004) Infinitely Many Positive Solutions of the Diophantine Equation . Computers & Mathematics with Applications, 47, 115-121.
https://doi.org/10.1016/S0898-1221(04)90010-7
[2]  Yuan, P.Z. and Hu, Y.Z. (2011) On the Diophantine Equation . Computers & Mathematics with Applications: An International Journal, 61, 573-577.
[3]  冯丽, 袁平之. 关于一类二次不定方程[J]. 华南师范大学学报(自然科学版), 2012, 44(2): 46-47.
[4]  Hu, Y.Z. and Le, M.H. (2013) On the Diophantine Equation . Chinese Annals of Mathematics, Series B, 34, 715-718.
https://doi.org/10.1007/s11401-013-0792-x
[5]  樊晖. 关于不定方程[D]: [硕士学位论文]. 南京: 南京师范大学, 2015: 7-18.
[6]  管训贵. 关于不定方程[J]. 数学的实践与认识, 2016, 46(8): 208-214.
[7]  Keskin, R., ?iar, Z. and Karaatli, O. (2013) On the Diophantine Equation . Czechoslovak Mathematical Journal, 63, 783-797.
https://doi.org/10.1007/s10587-013-0052-y
[8]  Mavecha, S. (2017) On the Diophantine Equation . Annals of West University of TimisoaraMathematics and Computer Science, 55, 115-118.
https://doi.org/10.1515/awutm-2017-0008
[9]  Alkabouss, S.A., Benseba, B., Berbara, N., et al. (2021) A Note on the Diophantine Equation . Acta Mathematica, 63, 151-157.
https://doi.org/10.24193/mathcluj.2021.2.01
[10]  华罗庚. 数论导引[M]. 北京: 科学出版社, 1979: 264-287.
[11]  柯召, 孙琦. 谈谈不定方程[M]. 上海: 上海教育出版社, 1980: 31-32.
[12]  Stolt, B. (1952) On the Diophantine Equation : Part II. Arkiv f?r Matematik, 2, 251-268.
https://doi.org/10.1007/BF02590882

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133