%0 Journal Article %T 不定方程 x 2 kxy+k y 2 +dy=0的正整数解
The Positive Integer Solutions of the Diophantine Equation x 2 kxy+k y 2 +dy=0 %A 龚禹豪 %J Advances in Applied Mathematics %P 2771-2779 %@ 2324-8009 %D 2024 %I Hans Publishing %R 10.12677/aam.2024.136266 %X 本文研究了在d∈{3,5,7,11,13,17,19},k∈N?时,不定方程x2?kxy+ky2+dy=0有无穷多个正整数解(x, y)当且仅当d = 3,k = 5, 6, 7;d = 5,k = 5, 7, 9;d = 7,k = 5, 8, 11;d = 11,k = 5, 6, 9, 10, 15;d = 13,k = 5, 11, 17;d = 17,k = 5, 7, 11, 13, 21;d = 19,k = 5, 11, 14, 23。在d为奇素数时,给出了不定方程x2?kxy+ky2+dy=0正整数解的一些必要条件。
In this paper, we study that atd∈{3,5,7,11,13,17,19},k∈N?, the indefinite equationx2?kxy+ky2+dy=0has infinitely many positive integer solutions (x, y) when and only when d = 3, k = 5, 6, 7; d = 5, k = 5, 7, 9; d = 7, k = 5, 8, 11; d = 11, k = 5, 6, 9, 10, 15; d = 13, k = 5, 11, 17; d = 17, k = 5, 7, 11, 13, 21; d = 19, k = 5, 11, 14, 23. Some necessary conditions for positive integer solutions of the indefinite equationx2?kxy+ky2+dy=0are given when d is an odd prime. %K 不定方程,Pell方程,正整数解,二次剩余,同余
Diophantine Equation %K Pell Equation %K Positive Integer Solution %K Quadratic Residues %K Congruence %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=89759