%0 Journal Article
%T 不定方程的正整数解
The Positive Integer Solutions of the Diophantine Equation
%A 龚禹豪
%J Advances in Applied Mathematics
%P 2771-2779
%@ 2324-8009
%D 2024
%I Hans Publishing
%R 10.12677/aam.2024.136266
%X 本文研究了在d∈{3,5,7,11,13,17,19},k∈N?时,不定方程x2?kxy+ky2+dy=0有无穷多个正整数解(x, y)当且仅当d = 3,k = 5, 6, 7;d = 5,k = 5, 7, 9;d = 7,k = 5, 8, 11;d = 11,k = 5, 6, 9, 10, 15;d = 13,k = 5, 11, 17;d = 17,k = 5, 7, 11, 13, 21;d = 19,k = 5, 11, 14, 23。在d为奇素数时,给出了不定方程x2?kxy+ky2+dy=0正整数解的一些必要条件。
In this paper, we study that atd∈{3,5,7,11,13,17,19},k∈N?, the indefinite equationx2?kxy+ky2+dy=0has infinitely many positive integer solutions (x, y) when and only when d = 3, k = 5, 6, 7; d = 5, k = 5, 7, 9; d = 7, k = 5, 8, 11; d = 11, k = 5, 6, 9, 10, 15; d = 13, k = 5, 11, 17; d = 17, k = 5, 7, 11, 13, 21; d = 19, k = 5, 11, 14, 23. Some necessary conditions for positive integer solutions of the indefinite equationx2?kxy+ky2+dy=0are given when d is an odd prime.
%K 不定方程,Pell方程,正整数解,二次剩余,同余
Diophantine Equation
%K Pell Equation
%K Positive Integer Solution
%K Quadratic Residues
%K Congruence
%U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=89759