全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

具有不规范非线性顶的混合分数阶薛定需方程组全局解的不存在性
Nonexistence of Global Solutions for Mixed Fractional Schr?dinger Equations with Non-gauge Nonlinearities

DOI: 10.12677/AAM.2024.135243, PP. 2549-2560

Keywords: 测试函数,有限时间爆破,存在时间估计
Test Function
, Finite Time Blow-Up, Lifespan

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究了一个具有不规范非线性顶的混合分数阶薛定需方程组的柯西问题。 通过引入有效的测 试函数, 导出关于解的加权积分的常微分不等式,利用常微分方程的性质证明了解会在有限时间内 爆破, 井得到了解存在时间的上估计。
This paper studies the Cauchy problem for a system of mixed fractional Schro¨dinger equations with non-gauge nonlinearities. By introducing an effective test function, we derive an ordinary differential inequality on the weighted integral of the solution, prove that the solution will blow-up in finite time by using the properties of ordinary differential equations, and obtain an upper estimate of the lifespan of the solution.

References

[1]  Akhmediev, N.N. and Ankiewicz, A. (1997) Solitons, Nonlinear Pulses and Beams. Chapman& Hall, London.
[2]  Bhattarai, S. (2015) Stability of Solitary-Wave Solutions of Coupled NLS Equations with Power-Type Nonlinearities. Advances in Nonlinear Analysis, 4, 73-90.
https://doi.org/10.1515/anona-2014-0058
[3]  Kivshar, Y.S. and Agrawal, G.P. (2003) Optical Solitons: From Fibers to Photonic Crystals. Academic Press, San Diego.
https://doi.org/10.1016/B978-012410590-4/50012-7
[4]  Manakov, S.V. (1974) On the Theory of Two-Dimensional Stationary Self-Focusing of Elec- tromagnetic Waves. Soviet Physics-JETP, 38, 248-253.
[5]  Menyuk, C. (1987) Nonlinear Pulse Propagation in Birefringent Optical Fibers. IEEE Journal of Quantum Electronics, 23, 174-176.
https://doi.org/10.1109/JQE.1987.1073308
[6]  Wadati, M., Iizuka, T. and Hisakado, M. (1992) A Coupled Nonlinear Schro¨dinger Equation and Optical Solitons. Journal of the Physical Society of Japan, 61, 2241-2245.
https://doi.org/10.1143/JPSJ.61.2241
[7]  Menyuk, C.R. (1987) Nonlinear Pulse Propagation in Birefringent Optical Fibers. IEEE Jour- nal of Quantum Electronics, 23, 174-176.
https://doi.org/10.1109/JQE.1987.1073308
[8]  Bartsch, T. and Wang, Z.Q. (2006) Note On Ground States of Nonlinear Schro¨dinger Systems. Journal of Partial Differential Equations, 19, 200-207.
[9]  Cipolatti, R. and Zumpichiatti, W. (2000) Orbitally Stable Standing Waves for a System of Coupled Nonlinear Schro¨dinger Equations. Nonlinear Analysis, Theory, Methods and Applica- tions, 42, 445-461.
https://doi.org/10.1016/S0362-546X(98)00357-5
[10]  Lopes, O. (2006) Stability of Solitary Waves of Some Coupled Systems. Nonlinearity, 19, 95-114.
https://doi.org/10.1088/0951-7715/19/1/006
[11]  Lopes, O. (2011) Stability of Solitary Waves for a Generalized Nonlinear Coupled Schro¨dinger Systems. Sao Paulo Journal of Mathematical Sciences, 5, 175-184.
https://doi.org/10.11606/issn.2316-9028.v5i2p175-184
[12]  Nguyen, N.V. and Wang, Z.Q. (2011) Orbital Stability of Solitary Waves for a Nonlinear Schro¨dinger System. Advances in Differential Equations, 16, 977-1000.
https://doi.org/10.57262/ade/1355703184
[13]  Cely, L. and Goloshchapova, N. (2022) Variational and Stability Properties of Coupled NLS Equations on the Star Graph. Nonlinear Analysis, 224, Article 113056.
https://doi.org/10.1016/j.na.2022.113056
[14]  Chen, J.Q. and Guo, B.L. (2009) Blow-Up Profile to the Solutions of Two-Coupled Schro¨dinger Equations. Journal of Mathematical Physics, 50, Article 023505.
https://doi.org/10.1063/1.3075575
[15]  高毅立. 非线性薛定号方程组解的爆破准则[J]. 数学进展, 2021, 50(5): 723-728.
[16]  朱琳, 李春花. 一类带幕型非线性薛定号方程组的爆破准则[J]. 黑龙江大学自然科学学报, 2023 40(1): 16-24.
[17]  Gustafson, S., Nakanishi, K. and Tsai, T.-P. (2006) Scattering for the Gross-Pitaevskii Equa- tion. Mathematical Research Letters, 13, 273-285.
https://doi.org/10.4310/MRL.2006.v13.n2.a8
[18]  Gustafson, S., Nakanishi, K. and Tsai, T.-P. (2007) Global Dispersive Solutions for the Gross- Pitaevskii Equation in Two and Three Dimensions. Annales Henri Poincar′e, 8, 1303-1331.
https://doi.org/10.1007/s00023-007-0336-6
[19]  Fujiwara, K. and Ozawa, T. (2015) Remarks on Global Solutions to the Cauchy Problem for Semirelativistic Equations with Power Type Nonlinearity. International Journal of Mathemat- ical Analysis, 9, 2599-2610.
https://doi.org/10.12988/ijma.2015.58211
[20]  Kwa′snicki, M. (2017) Ten Equivalent Definitions of the Fractional Laplace Operator. Fractional Calculus and Applied Analysis, 20, 7-51.
https://doi.org/10.1515/fca-2017-0002
[21]  Dao, T.A. and Reissig, M. (2021) Blow-Up Results for Semi-Linear Structurally Damped σ-Evolution Equations. Anomalies in Partial Differential Equations. In: Cicognani, M., Del Santo, D., Parmeggiani, A. and Reissig, M., Eds., Anomalies in Partial Differential Equations, Vol. 43, Springer, Cham, 213-245.
https://doi.org/10.1007/978-3-030-61346-4 10

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133