%0 Journal Article %T 具有不规范非线性顶的混合分数阶薛定需方程组全局解的不存在性
Nonexistence of Global Solutions for Mixed Fractional SchrÖdinger Equations with Non-gauge Nonlinearities %A 蒲俊 %J Advances in Applied Mathematics %P 2549-2560 %@ 2324-8009 %D 2024 %I Hans Publishing %R 10.12677/AAM.2024.135243 %X 本文研究了一个具有不规范非线性顶的混合分数阶薛定需方程组的柯西问题。 通过引入有效的测 试函数, 导出关于解的加权积分的常微分不等式,利用常微分方程的性质证明了解会在有限时间内 爆破, 井得到了解存在时间的上估计。
This paper studies the Cauchy problem for a system of mixed fractional Schro¨dinger equations with non-gauge nonlinearities. By introducing an effective test function, we derive an ordinary differential inequality on the weighted integral of the solution, prove that the solution will blow-up in finite time by using the properties of ordinary differential equations, and obtain an upper estimate of the lifespan of the solution. %K 测试函数,有限时间爆破,存在时间估计
Test Function %K Finite Time Blow-Up %K Lifespan %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=88640