全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

圆环中2-点涡的可积运动
Integrable Motion of Two-Vortexin Annulus

DOI: 10.12677/pm.2024.145184, PP. 269-280

Keywords: 点涡,哈密顿系统,可积性,作用-角变量,相对均衡解
Point Vortex
, Hamiltonian System, Integrability, Action-Angle, Quasi-Equilibrium Solutions

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文运用镜像法得到了圆环区域上 Dirichlet 边值拉普拉斯算子的格林函数和两点涡系统的哈密顿函数,并用作用-角变量方法对系统进行约化。 以两点涡强度相等为例,对圆环分别在内外半径比q = 0.02, q = 0.08, q = 0.2 时得到了以涡度矩 I 为参数的系统相对均衡解的完整分类,最后针对 各种情况刻画出两个点涡的相对运动轨迹。
In this paper, the Green's function of the Dirichlet marginal Laplace operator and the Hamiltonian function of the two-point vortex system in annular domain are obtained by the method of image, we make reduction to the system by action-angle variables method, and take the example of the equal strength case to describe their relative motion trajectories and classify the system's quasi-equilibrium solutions were obtained by considering the circular ring at different inner-to-outer radius ratios:q = 0:02, q = 0:08 and q = 0:2, with the vorticity moment I as a parameter.

References

[1]  Lin, C.C. (1941) On the Motion of Vortices in 2D: I. Existence of the Kirchhoff- Routh Function. Proceedings of the National Academy of Sciences of the United States of America, 27, 570-575.
https://doi.org/10.1073/pnas.27.12.570
[2]  Lin, C.C. (1941) On the Motion of Vortices in 2D II. Some Further Properties on the Kirchhoff-Routh Function. Proceedings of the National Academy of Sciences of the United States of America, 27, 575-577.
https://doi.org/10.1073/pnas.27.12.575
[3]  Thomson, J.J.S. (1968) A Treatise on the Motion of Vortex Rings: An Essay to Which the Adams Prize Was Adjudged in 1882, in the University of Cambridge. Dawsons of Pall Mall, London.
[4]  Havelock T. H. (1931) The Stability of Motion of Rectilinear Vortices in Ring For- mation. Philosophical Magazine, 11, 617-633.
https://doi.org/10.1080/14786443109461714
[5]  Kurakin, L.G. (2010) On the Stability of Thomson's Vortex Configurations inside a Circular Domain. Regular and Chaotic Dynamics, 15, 40-58.
https://doi.org/10.1134/S1560354710010028
[6]  Pashaev, O.K. and Yilmaz, O. (2011) Hamiltonian Dynamics of N Vortices in Con- centric Annular Region. Journal of Physics A: Mathematical and Theoretical, 44, Article 185501.
https://doi.org/10.1088/1751-8113/44/18/185501
[7]  Lakaniemi, M. (2007) On the Dynamics of Point Vortices in a Quantum Gas Con- fined in an Annular Region. arXiv: 0708.1898
[8]  Bolsinov, A.V., et al. (2010) Topology and Stability of Integrable Systems. Russian Mathematical Surveys, 65, 259-318.
https://doi.org/10.1070/RM2010v065n02ABEH004672
[9]  Vaskin, V.V. and Erdakova, N.N. (2010) On the Dynamics of Two Point Vortices in an Annular Region. Russian Journal of Nonlinear Dynamics, 6, 531-547.
https://doi.org/10.20537/nd1003005
[10]  Courant, R. and Hilbert, D. (1989) Methods of Mathematical physics. Vol. II. Partial Differential Equations. John Wiley & Sons, Inc., New York.
https://doi.org/10.1002/9783527617234
[11]  Arnold, V.I. (1978) Mathematical Methods of Classical Mechanics. Springer-Verlag, New York.
https://doi.org/10.1007/978-1-4757-1693-1
[12]  戴芋慧, 晋榕榕, 毛玉兰. 圆盘中2-点涡的可积运动[J]. 北京师范大学学报(自然科学 版), 2019, 55(2): 179-184.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133