%0 Journal Article
%T 圆环中2-点涡的可积运动
Integrable Motion of Two-Vortexin Annulus
%A 焦星月
%A 郭童
%A 倪尔东
%J Pure Mathematics
%P 269-280
%@ 2160-7605
%D 2024
%I Hans Publishing
%R 10.12677/pm.2024.145184
%X 本文运用镜像法得到了圆环区域上 Dirichlet 边值拉普拉斯算子的格林函数和两点涡系统的哈密顿函数,并用作用-角变量方法对系统进行约化。 以两点涡强度相等为例,对圆环分别在内外半径比q = 0.02, q = 0.08, q = 0.2 时得到了以涡度矩 I 为参数的系统相对均衡解的完整分类,最后针对 各种情况刻画出两个点涡的相对运动轨迹。
In this paper, the Green's function of the Dirichlet marginal Laplace operator and the Hamiltonian function of the two-point vortex system in annular domain are obtained
by the method of image, we make reduction to the system by action-angle variables
method, and take the example of the equal strength case to describe their relative
motion trajectories and classify the system's quasi-equilibrium solutions were obtained
by considering the circular ring at different inner-to-outer radius ratios:q = 0:02,
q = 0:08 and q = 0:2, with the vorticity moment I as a parameter.
%K 点涡,哈密顿系统,可积性,作用-角变量,相对均衡解
Point Vortex
%K Hamiltonian System
%K Integrability
%K Action-Angle
%K Quasi-Equilibrium Solutions
%U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=87751